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MISALLOCATION AND PRODUCT CHOICE

• misallocation is a big driver of cross-country income differences

− market frictions, distortionary policies→ inputs not allocated to most productive uses

• misallocation especially severe & costly in agriculture in low-income countries
• farms grow different crops, most grow multiple

− but misallocation literature uses single-product firms using the same production fn

how does heterogeneous product choice affect
aggregate misallocation cost?
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PREVIEW

DATA

• Indian farm-crop-level survey
• estimate crop-level production functions

− crops are significantly heterogeneous in input intensities

MODEL

• multi-product farms choose products, face misallocative distortions
• efficient input markets in India→ aggregate agricultural output ↑ 4×

COMPARED TO THE MULTI-PRODUCT MODEL, STANDARD 1-PRODUCT MODELS:

• overstate frictions in data

→ overstate benefit of partial reallocations

• understate firm expansion if frictions lifted

→ understate total cost of misallocation
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LITERATURE
• AGRICULTURAL MISALLOCATION

− base framework: Chen, Restuccia, Santaeulalia-Llopis (2022) building on Hsieh, Klenow
(2009) for manufacturing

− measure misallocation from specific frictions: Chen (2017), Gottlieb and Grobovsek (2019)
− identify overall misallocation from general frictions: Gollin, Udry (2021), Aragon, Restuccia,

Rud (2022), Adamopoulos, Brandt, Leight, Restuccia (2022), Ayerst, Brandt, Restuccia (2023)
− this paper:

> crop-specific production functions
> multi-crop farms adjusting crop choice to frictions

• MULTI-PRODUCT FIRMS & MISALLOCATION

− Jaef (2018), Wang, Yang (2021): manufacturers choose # of products with heterog. TFPs
→ # of products responds to distortions

− this paper:

> heterogeneous productivities and production functions

• agriculture is perfect to explore interaction of product choice and misallocation
▶ why

− but mechanisms apply equally to other sectors
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DATA



DATA

• India’s Rural Economic and Demographic Survey (REDS)
− nationally representative of rural Indian households

− use 2007-08 round, only with crop-plot-level data
• 10,318 plots, 4,803 farmers

− plot-crop-level inputs, outputs
− plot-level physical characteristics
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MULTI-PRODUCT FARMS IN INDIA



CROP CHOICE IS HETEROGENEOUS
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MANY FARMS GROW MULTIPLE CROPS, MAINLY ACROSS SEASONS

• 3 agricultural seasons: Kharif (monsoon), Rabi (winter/spring), Zaid (summer/dry)
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PRODUCTION FUNCTIONS



ESTIMATE CROP-SPECIFIC PRODUCTION FUNCTIONS

• production function:
yf,i,t = zf,i,tlγif,i,tx

αlabor,i
labor,f,i,tx

αinter,i
inter,f,i,t

− for farm f, crop i, season t
− y = physical output
− l = land input (quality-adjusted)

> common measures: land area ignores quality, land price is noisy
> instead: use random forests to predict land price using physical land features

▶ quality index construction

− xlabor = labor input (days)
− xinter = intermediate inputs (seeds, fertilizer, etc.)

▶ inputs, output
• merge crops into 5 groups ▶ list
• 2SLS at plot-level using instruments for inputs: Gollin, Udry (2021)’s method

− idea: shocks to farm f’s plots k ̸= j change shadow price of inputs on f’s plot j
▶ details
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MODEL OBJECTIVES

• OBJECTIVES:

− model multi-product farm decisions in presence of distortions
− provide a mapping from observable outcomes to unobserved distortions
− quantify the aggregate output cost of misallocation induced by distortions

• build on models of single-product firm-level misallocation

− Hsieh, Klenow (2009): misallocation in manufacturing
− Chen, Restuccia, Santaeulalia-Llopis (2022): misallocation in agriculture

• add multi-product farms choosing among heterogeneous products
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FARM: PRODUCTION

max

N∑
i=1

(

p

i
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,i

︷ ︸︸ ︷
zf

,i
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γ

i

Πg
(
xf,g
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αg
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)

)η

︸ ︷︷ ︸
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G∑
g=1
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τf,g

N∑
i=1

τf,g,i

xf,g

,i

︸ ︷︷ ︸
flex. input costs

−
N∑
i=1

ω · 1[yf,i > 0]︸ ︷︷ ︸
fixed cost per crop

s.t.

N∑
i=1

lf

,iτf,l,i

= Lf (λf)

• profit-maximizing farm f: sells output pyf, pays for inputs

• Cobb-Douglas production function with TFP zf
• flexible inputs g: labor, intermediates

− quantity xf,g rented at rg
• land input l is in fixed supply Lf

− almost no land market in India
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FARM: DISTORTIONS
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• farm-input distortions τf,g capture misallocative frictions
− represented with tax (τf,g > 1) or subsidy (τf,g < 1) idiosyncratic to farm f, input g

• between inputs: τf,labor > τf,inter → farm f uses “too little” labor
• between farms: τ1,g > τ2,g ∀g → farm 1 is “too small” given its TFP zf
• Lf fixed→ land is also distorted unless distributed to equalize λf

− e.g. lacking property rights, communal land distribution
• distortions extracted from observed input, output choices

− rationalize all heterogeneity in data ▶ details

11/18



FARM: DISTORTIONS

max

N∑
i=1

(

p

i

yf

,i

︷ ︸︸ ︷
zf

,i

lf

,i

γ

i

Πg
(
xf,g

,i

αg

,i

)

)η

︸ ︷︷ ︸
revenue

−
G∑
g=1

rgτf,g

N∑
i=1

τf,g,i

xf,g

,i

︸ ︷︷ ︸
flex. input costs

−
N∑
i=1

ω · 1[yf,i > 0]︸ ︷︷ ︸
fixed cost per crop

s.t.

N∑
i=1

lf

,iτf,l,i

= Lf (λf)

• farm-input distortions τf,g capture misallocative frictions
− represented with tax (τf,g > 1) or subsidy (τf,g < 1) idiosyncratic to farm f, input g

• between inputs: τf,labor > τf,inter → farm f uses “too little” labor

• between farms: τ1,g > τ2,g ∀g → farm 1 is “too small” given its TFP zf
• Lf fixed→ land is also distorted unless distributed to equalize λf

− e.g. lacking property rights, communal land distribution
• distortions extracted from observed input, output choices

− rationalize all heterogeneity in data ▶ details

11/18



FARM: DISTORTIONS

max

N∑
i=1

(

p

i

yf

,i

︷ ︸︸ ︷
zf

,i

lf

,i

γ

i

Πg
(
xf,g

,i

αg

,i

)

)η

︸ ︷︷ ︸
revenue

−
G∑
g=1

rgτf,g

N∑
i=1

τf,g,i

xf,g

,i

︸ ︷︷ ︸
flex. input costs

−
N∑
i=1

ω · 1[yf,i > 0]︸ ︷︷ ︸
fixed cost per crop

s.t.

N∑
i=1

lf

,iτf,l,i

= Lf (λf)

• farm-input distortions τf,g capture misallocative frictions
− represented with tax (τf,g > 1) or subsidy (τf,g < 1) idiosyncratic to farm f, input g

• between inputs: τf,labor > τf,inter → farm f uses “too little” labor
• between farms: τ1,g > τ2,g ∀g → farm 1 is “too small” given its TFP zf

• Lf fixed→ land is also distorted unless distributed to equalize λf

− e.g. lacking property rights, communal land distribution
• distortions extracted from observed input, output choices

− rationalize all heterogeneity in data ▶ details

11/18



FARM: DISTORTIONS

max

N∑
i=1

(

p

i

yf

,i

︷ ︸︸ ︷
zf

,i

lf

,i

γ

i

Πg
(
xf,g

,i

αg

,i

)

)η

︸ ︷︷ ︸
revenue

−
G∑
g=1

rgτf,g

N∑
i=1

τf,g,i

xf,g

,i

︸ ︷︷ ︸
flex. input costs

−
N∑
i=1

ω · 1[yf,i > 0]︸ ︷︷ ︸
fixed cost per crop

s.t.

N∑
i=1

lf

,iτf,l,i

= Lf (λf)

• farm-input distortions τf,g capture misallocative frictions
− represented with tax (τf,g > 1) or subsidy (τf,g < 1) idiosyncratic to farm f, input g

• between inputs: τf,labor > τf,inter → farm f uses “too little” labor
• between farms: τ1,g > τ2,g ∀g → farm 1 is “too small” given its TFP zf
• Lf fixed→ land is also distorted unless distributed to equalize λf

− e.g. lacking property rights, communal land distribution

• distortions extracted from observed input, output choices
− rationalize all heterogeneity in data ▶ details

11/18



FARM: DISTORTIONS

max

N∑
i=1

(

p

i

yf

,i

︷ ︸︸ ︷
zf

,i

lf

,i

γ

i

Πg
(
xf,g

,i

αg

,i

)

)η

︸ ︷︷ ︸
revenue

−
G∑
g=1

rgτf,g

N∑
i=1

τf,g,i

xf,g

,i

︸ ︷︷ ︸
flex. input costs

−
N∑
i=1

ω · 1[yf,i > 0]︸ ︷︷ ︸
fixed cost per crop

s.t.

N∑
i=1

lf

,iτf,l,i

= Lf (λf)

• farm-input distortions τf,g capture misallocative frictions
− represented with tax (τf,g > 1) or subsidy (τf,g < 1) idiosyncratic to farm f, input g

• between inputs: τf,labor > τf,inter → farm f uses “too little” labor
• between farms: τ1,g > τ2,g ∀g → farm 1 is “too small” given its TFP zf
• Lf fixed→ land is also distorted unless distributed to equalize λf

− e.g. lacking property rights, communal land distribution
• distortions extracted from observed input, output choices

− rationalize all heterogeneity in data ▶ details

11/18



FARM: MULTIPLE PRODUCTS
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fixed cost per crop

s.t.
N∑
i=1

lf,iτf,l,i = Lf (λf)

• heterogeneous crops i = 1 . . .N

• l in fixed supply Lf → interdependent crop production
− params of crop i change→ λf changes→ inputs and outputs of crops −i change
− Just, Zilberman, and Hochman (1983), Shumway, Pope, Nash (1984)
− justifies Gollin, Udry (2021) prod. fn. identification

• farm-input-crop distortions τf,g,i, τf,l,i
→ fit observed input ratio heterogeneity across crops within a farm
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FARM: FIXED COST
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• fixed cost ω per produced crop
→ farms choose crop set in addition to crop mix
− farms don’t all produce everything
→ fit observed heterogeneity in crop sets

11/18



FARM: CONCAVITY
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• crop-level concavity term η < 1

• captures several motives for farmers to mix crops beyond prod. fn. DRS

− risk
− subsistence + love of variety
− market power
− farm’s problem with η equivalent to subsistence or market power ▶ details

• calibrated to minimize distortions needed to explain data ▶ details
▶ solution ▶ GE
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REALLOCATION

• to quantify aggregate cost of distortions, conduct counterfactual reallocations

− equalize (or reduce) distortions between farms
− prohibit product switching to limit assumptions
− treat each season as a separate economy

• compute counterfactual ∆output: reallocation gain

− reflects aggr. TFP gain from better input allocation between farms
− captures misallocation cost

• compare reallocation gain between multi-product model and 1-product model
▶ details
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EXERCISES

BENCHMARK EXERCISE

• equalize cross-farm distortions λf, τf,g
• keep within-farm distortions τf,l,i, τf,g,i

− preserve idiosyncratic product choice
motives

reallocation gain

multi-product: 294%
1-product: 212% (28% ↓)

MATCH LEAST-DISTORTED STATE

• a more conservative and practical
estimate

• downscale frictions s.t. their variances
match those in the least-distorted state

− Tamil Nadu has the least dispersed
distortions

multi-product: 35%
1-product: 45% (26% ↑)

▶ sensitivity to concavity ▶ role of states, seasons
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MECHANISMS



MECHANISMS CONTRIBUTING TO 1-PRODUCT MODEL ERROR

• PRODUCT HETEROGENEITY AS FRICTIONS ▶ details

− heterogeneous product choice→ heterogeneous input mixes
− 1-product model views heterogeneous input mixes as evidence of frictions
→ overstates misallocation

• ENDOGENOUS PRODUCT CHOICE ▶ details

− farms can partly mitigate effect of frictions
− by growing product less intensive in the distorted input
− 1-product model misses this margin of adjustment
→ overstates misallocation

• TFP DISPERSION ▶ details

− 1-product model misses within-farm TFP dispersion across products
→ understates misallocation

• RETURNS TO SCALE ▶ details

− farms growing products with high returns to scale can expand more
− 1-product model misses consumer’s ability to substitute toward high-RS products
→ understates misallocation
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MECHANISMS DECOMPOSITION: BENCHMARK REALLOCATION
• benchmark: single-product model understates gain by 82 pp (28%)

• assess total drag of misallocation→ firms’ ability to expand matters most
→ single-product model understates misallocation
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MECHANISMS DECOMPOSITION: “LEAST-DISTORTED STATE” REALLOCATION
• “least-distorted state”: single-product model overstates gain by 10 pp (26%)

• consider partial reallocations→ estimation of frictions matters most
→ single-product model overstates misallocation ▶ details
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CONCLUSION

• existing misallocation estimates: single product or multiple homogeneous products

• estimate heterogeneous production functions across crops in India
• multi-product model shows that conventional 1-product models:

− overstate misallocation by

> misinterpreting product heterogeneity as frictions
> missing endogenous product choice response

− understate misallocation by

> ignoring within-farm productivity heterogeneity
> ignoring returns-to-scale heterogeneity across crops

• benchmark exercise: 1-product model understates misallocation

− but error depends on exercise of interest
− no simple correction that can be applied to standard models
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NEXT

• input-driven production method heterogeneity and misallocation

− in progress
− heterogeneity in land features→ different production methods
− production method heterogeneity can get mislabeled as misallocation

• study the dynamics of product choice

− crop rotation, crop complimentarities between seasons, years
− sticky input choices between seasons
→ input choices may appear inefficient statically but be optimal dynamically
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WHY AGRICULTURE?

• agriculture is the perfect setting to study endogenous product choice

− firm-product (farm-crop) inputs and outputs are feasible to measure
− products (crops) are ∼homogeneous across firms (farms)

• but mechanism applies to non-agricultural settings too
→ relevant for more developed countries too
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FARM SOLUTION EXPRESSIONS

∑
i∈If

(
λf

η
∑
g αg,i−1

1−η
∑
g αg,i−ηγi

)((
pizf,i

)η
η

(
γi
τf,l,i

)1−η
∑

g αg,i

Πg

(
αg,i

rgτf,gτf,g,i

)ηαg,i
) 1

1−η
∑
g αg,i−ηγi

τf,l,i = Lf

xf,g,i =
αg,i

rgτf,gτf,g,i

(
γi

λfτf,l,i

) ηγi
1−η

∑
g αg,i−ηγi

((
pizf,i

)η
ηΠh

(
αh,i

rhτf,hτf,h,i

)ηαh,i) 1
1−η

∑
h αh,i−ηγi

lf,i =
((
pizf,i

)η
η

(
γi

λfτf,l,i

)1−η
∑

g αg,i

Πg

(
αg,i

rgτf,gτf,g,i

)ηαg,i
) 1

1−η
∑
g αg,i−ηγi

back



LIST OF CROPS
Crop list

Rice Wheat Other Cereals Pulses Oilseeds, Fruits and Vegetables

Barley Black gram Oilseeds Vegetables Fruits /Condiments
Maize Green peas Sesame Ash gourd Mango
Sorghum Pigeon peas Groundnut Beet root Papaya
Pearl millet Horse gram Castor Bitter gourd Grapes
Finger millet Cowpea Sunflower Bottle gourd Plum
Others Kidney bean Niger Eggplant Cardamom

Lentil Soybean Board bean Chilli
Chickpeas Safflower Cabbage Cumin
Others Rapseed Cauliflower Dill seed

Linseed Carrot Indian mustard
Others Potato Other

Cucumber
Peas
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INPUTS, OUTPUTS

• labor:
− family and hired labor days by plots

• land:
− quality-adjusted land measure

• intermediate inputs:
− expenses on seeds, fertilizer, irrigation, machinery and bullocks, and fuels

• output:
− market value of quantity harvested
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INSTRUMENTAL VARIABLES

• idea: shocks to farm f’s plots k ̸= j change shadow price of inputs on f’s plot j

→ serve as instruments for inputs on j
• assumptions:

− observed shocks to farm f’s plot k affect shadow price of inputs on f’s plot j
− observed shocks affecting input demand on plot k are not correlated with unobserved

shocks affecting input demand on plot j, conditional on observed shocks to j
− f-level shocks interacted with plot-level features provide such shocks

• 2SLS first stage:
Mj,i,t = Zk̸=j,i,t + µj,i,t

− M = land, labor, intermediates
− Zk̸=j,i,t: instruments from other plots within farm

> agricultural shocks interacted with plot characteristics
> household, community characteristics & shocks interacted with plot characteristics
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INPUTS: LAND

• common land input measures are problematic

− plot area: ignores quality
− plot market price: likely excessively noisy when land markets are underdeveloped

• instead: predict plot’s market price with its physical land features

− use random forests for prediction

• → quality index = predicted price/acre

− captures quality: RF explains > 1
2 of observed price variation in test sample

− removes noise: use predicted values, minimize overfitting→ captured variation driven by
population patterns, not individual mismeasurement

▶ details
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INPUTS: QUALITY-ADJUSTED LAND

• procedure

1. split data into training sample (2/3) and test sample (1/3)
2. estimate OLS & RF on training data: reg log price/acre on land features

> physical characteristics: soil type, color, salinity, drainage, …
> irrigation access: presence of wells, canals, …
> OLS includes all 2-way interactions
> RF tuned with k-fold cross-validation

3. compute Mean Squared Error and R2 on test data
> to preclude overfitting

• results
OLS RF

MSE 0.61 0.49
R2 0.39 0.51

• → quality index = predicted price/acre
• quality-adjusted land = quality index× plot area
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PRODUCTION FUNCTIONS: ALL CROPS

back



PRODUCTION FUNCTIONS: TABLE

Aggregate Rice Wheat Other Cereals Pulses Veg, Frt, Oil

Land 0.427 0.511 0.414 0.407 0.379 0.330
(0.031) (0.021) (0.032) (0.034) (0.060) (0.035)

Labor 0.189 0.161 0.122 0.248 0.316 0.430
(0.031) (0.037) (0.036) (0.058) (0.074) (0.064)

Intermediates 0.351 0.307 0.517 0.245 0.255 0.127
(0.041) (0.033) (0.040) (0.046) (0.076) (0.052)

Observations 14,705 4,807 3,566 2,779 1,128 2,338
R2 0.624 0.742 0.713 0.590 0.417 0.572
Village FEs Y Y Y Y Y Y
Season FEs Y Y Y Y Y Y

First Stage: F statistics
Land 77.0 62.0 40.3 37.8 15.7 19.3
Labor 49.3 34.7 17.7 25.2 12.9 14.8
Intermediates 35.8 31.7 21.5 19.9 8.9 11.8

K-Paap Wald F statistic 51.1 40.4 16.0 30.8 12.4 12.7
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PRODUCTION FUNCTIONS: PAIRWISE EQUALITY TEST P-VALUES
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FARM: SOLUTION

• for each farm f, need to check all 2N possible sets of nonzero crops

1. fix crop set’s λf by solving one non-linear equation for each farm
2. compute optimal {xf,g,i}g,i, {lf,i}i, {yf,i}i given λf

3. compute optimal profit net of fixed cost
▶ expressions

• for each farm, pick profit-maximizing crop set
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POTENTIAL SOURCES OF CONCAVITY

• subsistence farmer with love of variety

− farmer minimizes costs of providing utility U:

U =

(∑
i

φiyηf,i

) 1
η

→ mix crops to provide a diverse diet
• crop-level markets are monopolistically competitive

− intermediate crop aggregator combines farms’ varieties:

Yi =

∑
f

yηf,i

 1
η

→ mix crops due to downward-sloping demand in each crop

• both setups produce farm-level FOCs that are identical to the main model

− but the appropriate way to define GE may be different
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EXTRACTING DISTORTIONS
• unobserved distortions map to observed marginal revenue products:

rgτf,gτf,g,i =
αg,iη

(
piyf,i

)η
xf,g,i

= mrpgf,i

λfτf,l,i =
γiη
(
piyf,i

)η
lf,i

= mrplf,i

• physical productivity implied by production fn.:
zf,i =

yf,i
lγif,iΠg

(
xαg,i
f,g,i

)
• → extracted fundamentals rationalize observed dispersion b/w farms

frictionless economy

⇔ τf,gτf,g,i = 1 ⇔ mrpgf,i = mrpgi, mrplf,i = mrpli

distorted economy

⇔ heterog. τf,gτf,g,i ⇔ heterog. mrpgf,i, mrplf,i

▶ splitting distortions
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SPLITTING DISTORTIONS

• splitting rgτf,gτf,g,i into 3 terms is arbitrary from farm f’s POV

− and does not matter for aggregate misallocation estimate
− but will matter for partial reallocation exercises→ come up with a sensible split

• split rgτf,g from τf,g,i:

− assume τf,g,i don’t distort f-level demand of g
→ Xf,g =

∑
i xf,g,i =

∑
i τf,g,ixf,g,i

• likewise restrict τf,l,i:
− assume τf,l,i don’t distort f-level demand of l

→ Lf =
∑

i lf,i =
∑

i τf,l,ilf,i

• split of rg from τf,g imposed by GE
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− but will matter for partial reallocation exercises→ come up with a sensible split
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ESTIMATE THE ELASTICITY OF SUBSTITUTION
• from consumption FOC:

log

(
piCi∑
j pjCj

)
= − log

∑
j

φσ
j p

1−σ
j

+ (1− σ) log pi + σ logφi

• estimate with 2SLS: log sh,i = β0 + β1 log ph,i + γi + εh,i

log sh,i

σ 1.699

log ph,i -0.699
(0.067)

Observations 40,833
Kleibergen-Paap F stat 230.9

Village-level instruments: Elevation× rain,
ruggedness × rain, pucca roads availability
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CHOOSE η THAT MINIMIZES IMPLIED DISPERSION
• τs reproducing data need to be extreme if η is too high or too low

• low η: farm, farm-crop output more uniformly distributed in efficient allocation
→ data farm size “too varied”, farms mix crops “too little” → extreme distortions

• high η: farm, farm-crop output more dispersed in efficient allocation
→ data farm size “too uniform”, farms mix crops “too much” → extreme distortions

→ pick η that minimizes distortions required to explain observed output distribution
→ conservative misallocation estimates

▶ details
back
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GENERAL EQUILIBRIUM

• representative consumer buys crops, sells inputs, receives profit from owned farms

max
{Ci}Ni=1

(∑
i

φiC
σ−1
σ

i

) σ
σ−1

s.t. ∑
i

piCi =
∑
g
rgXaggg +Π

• goods markets clear ∀i:
Ci =

∑
f

yf,i

• inputs markets clear ∀g: ∑
f

∑
i

xf,g,i = Xaggg

• estimate σ = 1.7 from consumption FOC ▶ details

▶ profits details
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CHOOSE η THAT MINIMIZES IMPLIED DISPERSION

• farm-crop revenue:

piyf,i =
((

1
λfτf,m,i

)γi

Πg

(
1

τf,gτf,g,i

)αg,i

︸ ︷︷ ︸
composite distortion, distf,i

) 1
1−η(

∑
g αg,i+γi)

(
pizf,iγγi

i η
∑

g αg,i+γiΠ

(
αg,i
rg

)αg,i
) 1

1−η(
∑
g αg,i+γi)

︸ ︷︷ ︸
“objective” factors

• Var(log distf,i) needed to match observed output dispersion depends on chosen η
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GE PROFITS

Π =
∑
f

 N∑
i=1

piyf,i −
G∑
g=1

rg
N∑
i=1

xf,g,i


• distortions τ , fixed costs ω, concavity η are not reflected in dividends sent to
consumer
− farmers act as if frictions they face had monetary representations
− but these are non-monetary and not added/subtracted from dividends

• equivalent formulation: τs, ωs are monetary taxes/subsidies, administered by
consumer
− show up in dividends and consumer’s BC as government revenue/expense

• choice is arbitrary: both formulations (or any mixture) produce identical equilibrium
conditions

back



REALLOCATION

• to quantify aggregate cost of distortions, conduct counterfactual reallocations

• equalize (or reduce) distortions τ between farms
• prohibit product set switching

→ don’t need productivities, frictions for unobserved farm-product combinations

• treat each season as a separate economy
− to prevent double-booking of inputs in a single season
− sum aggregate output across seasons

• compute counterfactual ∆output

− reallocation gain = ∆output between counterfactual and current
− aggregate inputs are fixed→ aggregate output ↑ reflects aggregate TFP ↑
− farm-level TFPs are fixed→ aggregate TFP ↑ reflects pure reallocation gain or

misallocation cost

• compare reallocation gain between multi-product model and 1-product model
▶ reallocation exercise details
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REALLOCATION EXERCISE DETAILS

• reallocation 1: equalize land and labor distortions, crop sets fixed

− farms can’t change crop sets, but can change crop ratios
− crop sets fixed→ extract all needed fundamentals from data
− set τf,gτf,g,i = 1, λf = λ̄

− solve for market-clearing {pi}i, {rg}g, λ̄
• reallocation 2: equalize land and labor distortions, allow crop set changes

− a farm can plant a crop it’s not observed growing→ counterfactual zf,i, τf,g, τf,g,i unknown
→ need to parameterize unconditional z, τ distributions and calibrate to match observed

conditional distributions
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BENCHMARK EXERCISE SENSITIVITY

(a) reallocation gain, %

(b) single-product model error, %

• misallocation estimates are always sensitive to calibrated concavity

− firms can expand grow more easily in reallocation→ greater gain

• sign and magnitude of single-product model’s error also depends on calibration
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REALLOCATION: ROLE OF STATES AND SEASONS

main within state no split by season

multi-product: 294% 107% 314%
1-product: 212% 124% 260%

back



MECHANISM I: PRODUCT HETEROGENEITY AS FRICTIONS
• 1-product model misinterprets crop heterogeneity as frictions

− farm 1 draws high z in rice, produces it
− farm 2 draws high z in vegetables, produces them
− assume no frictions→ αg,riceη(pricey1)

η

x1,g
=

αg,vegη(pvegy2)η
x2,g

in multi-crop model

− 1-product model: αg,aggη(paggy1)η
x1,g

̸= αg,aggη(paggy2)η
x2,g

→ imputes frictions
→ overstates misallocation

• exercise to isolate: apply 1-product model to counterfactual reallocation data
generated by multi-product model
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• 1-product model misinterprets crop heterogeneity as frictions

− farm 1 draws high z in rice, produces it
− farm 2 draws high z in vegetables, produces them
− assume no frictions→ αg,riceη(pricey1)
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generated by multi-product model
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MECHANISM II: TFP DISPERSION

• 1-product model understates TFP dispersion

− a farm has zL in rice, zH in vegetables
− severe frictions→ farm mostly grows rice→ avg TFP = zM < zH
− multi-crop model: remove frictions→ farm switches to vegetables→ avg TFP = zH
− 1-product model: remove frictions→ avg TFP still zM
→ 1-product model understates misallocation

• exercise to isolate: treat farm-crops as separate farms for 1-product model
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MECHANISM III: RETURNS TO SCALE
• some products have higher returns to scale→ some farms grow more in reallocation

• → consumer can substitute toward high-RS products to take advantage
→ 1-product model understates misallocation
• exercise to isolate: rescale input elasticities to equalize returns to scale
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MECHANISM IV: ENDOGENOUS PRODUCT CHOICE

• simulated multi-product farm as labor distortion τf,labor is varied:

• τf,labor ↑ → shift from labor-intensive vegetables to land-intensive rice
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MECHANISM IV: ENDOGENOUS PRODUCT CHOICE

• apply single-product model to extract frictions from simulated multi-product data

• multi-product model: optimal product choice response to frictions
− modest τf,labor increase→ shift to land-intensive rice→ hire even more land rel. to labor

• 1-product model: high input ratio dispersion→ infer large heterogeneity in frictions

→ 1-crop model overstates misallocation
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MECHANISM IV: ENDOGENOUS PRODUCT CHOICE

• exercise to isolate: prohibit farms in multi-product model to change product choice
in counterfactuals
− keep product sets fixed
− keep input allocation across crops fixed: farm can choose

∑
i xf,g,i but xf,g,i gets a fixed

share of total
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REMOVE MORE DISTORTIONS → 1-PRODUCT MODEL OVERSTATES
• 1-product error when conducting increasingly expansive reallocations:
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