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Abstract

We studywhether heterogeneity in the intrinsic features of production in-
puts may generate heterogeneity in production technologies optimally cho-
sen by firms, leading existing estimates of misallocation to overstate its costs.
Existing estimates of the severity of the misallocation of inputs across firms
rely on assuming homogeneous production technology and interpreting de-
viations from that technology as evidence of misallocative distortions. We
use a state-of-the-art clustering algorithm for ordinal data to group Indian
agricultural plots into land types by the intrinsic physical features of each
plot. Wefind that production functions are significantly heterogeneous across
land types, which we confirm with placebo-like randomization inference.
Some types of land are better suited to land-intensive technology, others to
labor-intensive technology, etc. We build a model in which heterogeneous
farmers face distortions and choose the type of land to rent. Weuse themodel
to quantify the cost of misallocation for India’s aggregate agricultural pro-
ductivity and compare it to conventional models that assume homogeneous
production technology.
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1 INTRODUCTION
Market frictions and distortionary government policies can prevent the produc-
tion inputs present in the economy frombeing allocated to theirmost efficient use:
productive firms may fail to hire inputs to expand or be forced to use suboptimal
mixes of inputs (Restuccia and Rogerson 2017). The resulting misallocation con-
tributes to cross-country income differences: it is especially severe in low-income
country landmarkets, drastically depressing their aggregate agricultural produc-
tivity (Chen, Restuccia, and Santaeulalia-Llopis 2022). The identification of firm-
or farm-level frictions and the quantification of their aggregate output cost relies
on measuring the dispersion in marginal products across producers and inputs
Hsieh and Klenow (2009). The measurement of heterogeneity in marginal prod-
ucts, however, is sensitive to the assumed production structure. If all producers
in the economy use the same production function, then any observed heterogene-
ity in their input choices reflects misallocative frictions. But if different producers
optimally choose different production methods, failing to account for this hetero-
geneity would lead estimates of misallocation to be overstated.

In this paper, we exploit the heterogeneity in the intrinsic features of a promi-
nent production input (land) and show that farmers operating different types of
land use different production approaches. This generates optimal heterogeneity
in input choices that is mistaken for evidence of misallocative frictions by stan-
dard models.

We use rich farm-plot-level data from India that includes information on the
intrinsic physical features of each cultivated plot along several dimensions—soil
type, color, salinity, and others—capturing the qualitative differences between
land inputs used by different farmers. To reduce the dimensionality of plot differ-
ences and facilitate production function estimation, we apply clustering analysis
from the field of machine learning to group plots into a handful of discrete types
(Han, Kamber, and Pei 2012). The available plot features are categorical but or-
dinal: commonly used clustering techniques are ill-suited to such data. We apply
HD-NDW, a state-of-the-art clustering algorithm developed for ordinal data by
Zhang and Cheung (2022). The algorithm groups plots into five land types such
that plots are similar within type and dissimilar across types.

We estimate agricultural production functions separately for each land type
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identified by the clustering algorithm. We find that farmers operating land of dif-
ferent types use different production functions with significantly heterogeneous
input elasticities and returns to scale. We conduct a placebo exercise inspired by
randomization inference and find that this heterogeneity is not driven simply by
slicing the data into types: alternative plot groupings are exceedingly unlikely to
produce production functions this heterogeneous.

To study the impact of input-driven production technology heterogeneity on
quantifyingmisallocation, we build amodel populatedwith heterogeneous farm-
ers facing general misallocative distortions, akin to Hsieh and Klenow (2009) and
Chen, Restuccia, and Santaeulalia-Llopis (2022). The models of this class allow
input and output market distortions to be identified through observed marginal
revenue products of individual farms, and for the aggregate output cost of these
distortions to be quantified. First, we compare the frictions and the cost ofmisallo-
cation between a standardmodel that assumes a single homogeneous production
function and a model that allows for production function heterogeneity between
land types. Next, we extend the model with an endogenous choice of land types
by farmers to understand the effect of market frictions on plot choice by farmers.

The impact of endogenous production technology choice on estimating pro-
ductivity differences across countries has been exploredwithinmanufacturing by
Eberhardt and Teal (2020) and within agriculture by Mundlak, Butzer, and Lar-
son (2012). At the micro-level, Li and Sasaki (2017) and Kasahara, Schrimpf,
and Suzuki (2023) develop methods of identifying production functions with
heterogeneous elasticities. Our exercise instead exploits a single potential driver
of heterogeneous production technology choice—the intrinsic features of land—
and shows that it is robustly associated with heterogeneous input elasticities. In
the misallocation literature, the most related paper is Gordeev and Singh (2023),
which estimates production functions at crop level and finds that accounting for
product heterogeneity is important for quantifying the cost of misallocation. In
contrast, the present paper explores production function heterogeneity driven by
immutable land features (rather than endogenous product choice).

The paper proceeds as follows. Section 2 discusses the farm-level data we use
and the construction of land types. Section 3 estimates type-specific production
functions. Section 4 describes the model and quantifies misallocation. Section 5
concludes.
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2 DATA
Weuse the 2007-08 roundof theRural Economic andDemographic Survey (REDS),
conducted by India’s National Council of Applied Economic Research.1 It con-
tains detailed information on household characteristics and economic activity of
8,659 households across 242 Indian villages, sampled to be nationally representa-
tive of rural India. Of these, 4,803 cultivated land: we restrict our sample to such
farm-operating households and treat them as farms.

2.1 INPUTS
We focus on three agricultural inputs observed at farm-plot level: land, labor,
and intermediate inputs. Labor is measured with the number of days worked
by family members and hired workers. Intermediate inputs comprise the total
expenditure on seeds, fertilizer, irrigation, rented machinery, and draft animals.

The land input deserves special treatment. It is commonly measured either
with the area cultivated or with the reported market price. The former ignores
quality differences while the latter is likely to be exceedingly noisy due to how
undeveloped the landmarkets are throughoutmost of India. Therefore, we adopt
a compromise solution of Gordeev and Singh (2023): we estimate a random forest
regression (Breiman 2001) to predict the reported price of each plot based on the
observed objective features of the plot. We then use the predicted market price
of each plot as the quality index. This method effectively captures most variation
in reported price but is de-noised and avoids overfitting: see Gordeev and Singh
(2023) for details.

2.2 LAND TYPES

Land characteristics. Observable soil characteristics of a plot of land can be
viewed as largely intrinsic and immutable features of the land input operated
by each farmer. Crucially, there is very little sorting of Indian farmers between
plots: 94% of land owners inherited the land, and only 12% of land cultivators

1. While the survey was collected in five rounds since 1971, only the 2007-08 round includes
the plot-level data needed for our analysis.
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participate in the rental market.2 While soil characteristics are likely to be related
to plot productivity, our land quality index explicitly captures any population-
level relationship between these characteristics and land price.

The REDS survey collected information on six physical characteristics of each
plot of land, each assessed on a discrete scale: top soil depth (up to 1 ft, 1-3 ft,
more than 3 ft), soil color (red, black, gray, yellow, brownish black, offwhite), soil
type (sand, loam, light clay, heavy clay, gravel, latrite), soil salinity (nil, moderate,
high), rate of percolation after one round of irrigation (fast, medium, slow), and ease
of drainage in case of heavy rainfall (easy, moderate, difficult).

HD-NDW clustering algorithm. To facilitate the empirical and quantitative
analysis of whether production technology responds to heterogeneous land char-
acteristics, we seek to reduce their dimensionality by grouping plots into sev-
eral discrete land types. Each plot in the data can be viewed as a point in the
six-dimensional space of measured soil features. Partitioning multi-dimensional
spaces into a handful of “clusters” such that points in each cluster are close to
one another but distant from points in other clusters is the objective of a well-
developed field of cluster analysis within machine learning (Han, Kamber, and
Pei 2012).

A number of clustering algorithms are commonly used. Some are designed
for continuous data, like 𝑘-means—others for categorical data, like 𝑘-modes. Plot
characteristics in REDS, however, present an intermediate case of ordinal cate-
gorical data: each of the six variables has a clear order, but the distance between
possible values is not well-defined.3 Applying algorithms designed for continu-
ous data would require imposing arbitrary distance metrics between categories.
Applying algorithms designed for unordered categorical data would ignore the
order. HD-NDW overcomes this tradeoff: it is a novel clustering method devel-
oped by Zhang and Cheung (2022) specifically for ordinal categorical data. It is
based on iteratively constructing a distance metric between levels of a variable
and across variables. HD-NDW outperforms other algorithms in cases where the
correct clustering is known and can be used for validation, justifying the use of

2. Source: Rural Economic and Demographic Survey (REDS) 2007-08.
3. The “soil type” feature can also be viewed as ordinal as it is ultimately determined by the

size of particles forming the soil.
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HD-NDW for its purpose: clustering data in which the correct clusters are not
known and need to be constructed.

The ND-NDW algorithm groups arbitrary ordinal data into a pre-specified
number of clusters 𝑘. To pick the optimal number of clusters, we use the average
silhouette coefficient metric: it captures the degree to which the average distance
between a point and other points in its cluster is low (clusters are compact) but
the average distance between a point and other points in different clusters is high
(clusters are separated) (Han, Kamber, and Pei 2012). A high value indicates
a high quality of clustering. We compare 𝑘 = 3, … , 10. The average silhouette
coefficient is maximized when 𝑘 = 5, so we use five clusters in the construction of
land types.

Land type clusters. Table 1 lists the land type clusters constructed by theHD-
NDWalgorithm, summarizing each by themode of each of the used land features.
In the next section, we testwhether the production technologies used by operators
of different land types are similar.

land
cluster

top soil
depth

soil
color

soil
type

soil
salinity

rate of
percolation

ease of
drainage # plots

I <1 ft yellow sand nil fast easy 1746
II 1-3 ft yellow light clay moderate fast easy 1024
III <1 ft yellow loam nil medium easy 1761
IV 1-3 ft red light clay moderate medium moderate 3485
V 1-3 ft yellow light clay nil medium moderate 1999

TABLE 1: Land type clusters described with the mode of each feature

3 PRODUCTION FUNCTIONS

3.1 ESTIMATION
We estimate the Cobb-Douglas production function at the level of plot 𝑖 belonging
to land type cluster 𝑐, in season 𝑡, allowing input elasticities to vary at the land type
cluster level 𝑐.
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𝑦𝑐,𝑖,𝑡 = 𝑧𝑐,𝑖,𝑡𝑙
𝛼𝑐
𝑐,𝑖,𝑡𝑛

𝛽𝑐
𝑐,𝑖,𝑡𝑚

𝛾𝑐
𝑐,𝑖,𝑡

𝑦𝑐,𝑖,𝑡 is the physical output produced of plot 𝑖 in season 𝑡. Production utilizes
three inputs: quality-adjusted land 𝑙 (with land type-specific elasticity 𝛼𝑐), labor 𝑛
measured in days worked (elasticity 𝛽𝑐), intermediate inputs 𝑚 measured as total
expenditure on seeds, fertilizer, irrigation, rented machinery, and draft animals.
𝑧𝑐,𝑖,𝑡 is the total factor productivity.

Taking logs, the regression specification is:

log 𝑦𝑐,𝑖,𝑡 = 𝛼𝑐 log 𝑙𝑐,𝑖,𝑡 + 𝛽𝑐 log𝑛𝑐,𝑖,𝑡 + 𝛾𝑐 log𝑚𝑐,𝑖,𝑡 + 𝜖𝑐,𝑖,𝑡 (1)

Estimating Equation 1 as-is suffers from a well-known simultaneity bias: en-
dogenously chosen observed input allocations are likely to be correlated with the
unobserved error term. To overcome this issue, we follow the method developed
for plot-level agricultural data by Gollin and Udry (2021). It is based on the idea
that observed productivity shocks at plot 𝑗 should not affect the unobserved pro-
ductivity of plot 𝑖 but should affect the shadow cost of inputs of plot 𝑖, as long as
it is operated by the same farmer. Such exogenous variation in the shadow cost
of inputs across plots offers an instrumental variable for plot-level input choices.
The second insight of their method is that plot-level shocks can be constructed by
interacting observed farm-level shocks with observed immutable plot-level char-
acteristics. We use an array of agricultural, health, and social shocks measured
at the household level and interact them with the same soil characteristics that
were used for quality-adjusted land input and land type cluster construction in
Section 2. We estimate Equation 1 using two-stage least squares (2SLS) and these
instruments.

3.2 PRODUCTION FUNCTIONS ARE HETEROGENEOUS ACROSS LAND
TYPES

Figure 1 visualizes the estimated input elasticities.4 The first panel displays the
elasticities of a single aggregate production function. The remaining panels dis-
play land type-specific estimates.

4. The complete regression table is shown in Appendix Table A.1.
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FIGURE 1: Production function input elasticities, by land type

The aggregate production function has expected input elasticities. Land is the
most important input, followed by intermediates and then labor. The three elas-
ticities add up to 0.97, suggesting that returns to scale are insignificantly different
from constant. However, different land types have significantly different produc-
tion functions. Type I exhibits significantly decreasing returns to scale. Types II
and III are significantly more labor-intensive. Type III, furthermore, exhibits in-
creasing returns to scale. Type IV’s land intensity far exceeds the aggregate one.
Only Type V is well approximated by the aggregate production function.

Placebo Test. These results suggest that different land types are indeed as-
sociated with different production functions. But can these estimated differences
be produced by random noise resulting from the fact that type-specific produc-
tion functions partition the data into thinner slices? To explore this possibility,
we conduct a test inspired by randomization-based inference.

First, we conduct pairwise equality tests for all possible coefficient pairs be-
tween land types. For each input, there are (5

2) = 10 pairs of type-specific elas-
ticities of this input. In total, for three inputs, there are 3 × 10 = 30 such pairs and
thus 30 pairwise equality tests we can conduct. We find that in 15 of these, the
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equality between the two types’ coefficients is rejected at the 10% level.
Next, we repeat this procedure for 1,000 randomly permuted land type as-

signments: the number of observations in each land type is preserved, but the
association between plots and land types is randomized. Each such random per-
mutation constitutes a “placebo” land type assignment. Computing the number
of equality tests rejected at each random permutation allows us to construct a null
distribution of this metric, presented in Figure 2.

FIGURE 2: Pairwise coefficient equality tests for randomly permuted cluster as-
signments

Of the 1,000 random permutations, only one matched the number of rejected
pairwise equality tests in the true land type assignment (15), and none exceeded
it. This result suggests that random slices of the data are exceedingly unlikely to
produce production functions that are as heterogeneous as they are between land
types constructed by the clustering algorithm.
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4 MODEL
Having determined that Indian farmers operating land of different types use dif-
ferent production functions, we turn to the model to explore the significance
of this finding for quantifying misallocation. The model builds on the conven-
tional frameworks of firm- or farm-level misallocation like Hsieh and Klenow
(2009), Restuccia and Rogerson (2008), and Chen, Restuccia, and Santaeulalia-
Llopis (2022). The principal novelty is that land in the economy is split into sev-
eral types with a unique production function associated with each. The most
related model is the multi-product farm model of Gordeev and Singh (2023).

The model economy is populated with 𝐹 heterogeneous farmers that rent in-
puts and produce the agricultural good.

4.1 FARM PROBLEM
Each farm is indexed with 𝑓 . The farm produces quantity 𝑦𝑓 of the agricultural
good, sells it at market price 𝑝, and seeks to maximize the resulting profits.

The farm chooses the quantity of each input to hire: land 𝑙𝑓 , labor 𝑛𝑓 , and
intermediate inputs 𝑚𝑓 . The market rental rates are 𝑟𝑙, 𝑟𝑛, 𝑟𝑚.

The farm chooses one land type 𝑐 out of 5 available types and rents land of
that type. We abstract from farms combining plots across different land types
for simplicity: 89% of farms operate plots that all belong to the same land type
cluster.

The farm uses a Cobb-Douglass production function 𝑦𝑓 = 𝑧𝑓 𝑙𝛼𝑐
𝑓 𝑛𝛽𝑐

𝑓 𝑚𝛾𝑐
𝑓 . Its

input elasticities 𝛼𝑐 (land), 𝛽𝑐 (labor), and 𝛾𝑐 (intermediates) depend on the land
type 𝑐 chosen by the farm. The total factor productivity 𝑧𝑓 is farm-specific.

Market frictions and distortionary government policies are represented in the
model with distortion terms that vary at the input-farm level: 𝜏𝑓 ,𝑙, 𝜏𝑓 ,𝑛, 𝜏𝑓 ,𝑚.
These act as a tax or a subsidy on the cost of each input and have been used in
the misallocation literature to flexibly capture a broad array of factors distorting
the allocation of inputs between firms or farms. While only the input costs have
explicit friction terms, this setup can also capture output distortions: a revenue
tax/subsidy is equivalent to a common component in all three input distortions.

The complete problem of the farm is:
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max𝑐

⎧{
⎨{⎩

max
𝑙𝑓 ,𝑛𝑓 ,𝑚𝑓

{𝑝𝑧𝑓 𝑙𝛼𝑐
𝑓 𝑛𝛽𝑐

𝑓 𝑚𝛾𝑐
𝑓 − 𝑟𝑙𝜏𝑓 ,𝑙𝑙𝑓 − 𝑟𝑛𝜏𝑓 ,𝑛𝑛𝑓 − 𝑟𝑚𝜏𝑓 ,𝑚𝑚𝑓 }

⎫}
⎬}⎭

(2)

4.2 GENERAL EQUILIBRIUM
A representative consumer of the agricultural good purchases the outputs of in-
dividual farms. The consumer rents its endowments of labor 𝑁, intermediate
inputs 𝑀, and type-specific land endowments {𝐿𝑐}𝑐 to them. The consumer owns
all farms and receives their profits as dividends Π.

The consumer’s problem is:

max{log𝐶} (3)

s.t.
𝑝𝐶 = 𝑟𝑙𝐿 + 𝑟𝑛𝑁 + 𝑟𝑚𝑀 + Π (4)

where
Π = ∑

𝑓
[𝑝𝑦𝑓 − 𝑟𝑙𝑙𝑓 − 𝑟𝑛𝑛𝑓 − 𝑟𝑚𝑚𝑓 ] (5)

All input and output markets clear. Note that the endowment of each land
type is fixed: the market for land of each type must clear individually. Denote the
set of farms that choose type 𝑐 with 𝐹𝑐.

𝐶 = ∑
𝑓

𝑦𝑓 (6)

∑
𝑓 ∈𝐹𝑐

𝑙𝑓 = 𝐿𝑐 ∀𝑐 (7)

∑
𝑓

𝑛𝑓 = 𝑁 (8)

∑
𝑓

𝑚𝑓 = 𝑀 (9)
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4.3 EXTRACTING DISTORTIONS
In the class of models of misallocation following Hsieh and Klenow (2009), to
which our model belongs, the fundamental distortion terms can be extracted for
any farm in the data from its observed marginal products:

𝑟𝑙𝜏𝑓 ,𝑙 = 𝛼𝑐
𝑝𝑦𝑓
𝑙𝑓

= 𝑚𝑟𝑝𝑙𝑓 (10)

𝑟𝑛𝜏𝑓 ,𝑛 = 𝛽𝑐
𝑝𝑦𝑓
𝑛𝑓

= 𝑚𝑟𝑝𝑛𝑓 (11)

𝑟𝑚𝜏𝑓 ,𝑚 = 𝛾𝑐
𝑝𝑦𝑓
𝑚𝑓

= 𝑚𝑟𝑝𝑚𝑓 (12)

The way the total cost of each input is split into its market price 𝑟𝑥 and the
distortion term 𝜏𝑓 ,𝑥 does not matter for the farm’s choices. Only the dispersion in
these costs will affect the aggregate allocation: and that dispersion is determined
purely by the heterogeneity in 𝜏𝑓 ,𝑥.

The farm-specific productivity 𝑧𝑓 is implied by the assumed production func-
tion and is directly observable due to the availability of physical input and output
measures in the data we use:

𝑧𝑓 =
𝑦𝑓

𝑙𝛼𝑐
𝑓 𝑛𝛽𝑐

𝑓 𝑚𝛾𝑐
𝑓

(13)

Extracting the distortions and physical productivity from the data in this way
allows the model to represent every observed farm with its model equivalent, re-
producing all observed heterogeneity in input and output choices between farms.

4.4 QUANTIFYING MISALLOCATION
By limiting the ability of markets to allocate inputs to the most productive farms,
𝜏 distortions depress the aggregate productivity of the agricultural sector. Quan-
tifying the aggregate cost of misallocation boils down to conducting a counterfac-
tual reallocation exercise in which 𝜏 distortions are equalized between farms and
the counterfactual output is compared to the currently observed one.

Because the appropriate production function is different between land types,
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observed input choice heterogeneity between farmers operating different land
types may be optimal. Failing to account for production function heterogeneity
would lead conventional models of misallocation to overstate the magnitude of
distortions in the economy and their aggregate cost. To quantify the importance
of this effect, we conduct two sets of counterfactual reallocation exercises. First,
we compare the conventional model in which all farms use the same land type
with the same “aggregate” production function to the heterogeneous production
model in which farms use type-specific production functions but cannot move
from the currently observed land type. This comparison highlights the way that
misallocative frictions can be overstated when technology heterogeneity is not ac-
counted for. Second, we allow for endogenous land type selection in the model
and repeat the exercise. This comparison highlights the way that farmers may be
able to move to a different land type once market frictions are eased.

4.5 QUANTITATIVE RESULTS
Coming Soon!

5 CONCLUSION
Estimates of misallocation rely on mapping the observed heterogeneity in input
choices between producers to unobserved heterogeneity in fundamental frictions.
This mapping relies on the optimal production technology being the same for all
producers. We explore a particular source of potential heterogeneity in chosen
production technologies: the intrinsic characteristics of land operated by Indian
farmers. We group farm plots into land types using a clustering algorithm and
find that different land types have significantly heterogeneous production func-
tions. We quantify the effect of this heterogeneity on estimated misallocation in
India’s agricultural sector.

Our study focuses on a single plausibly exogenous driver of heterogeneity in
optimal input choices. Thus, it can only place a lower bound on the effect that
heterogeneous production technologies can have on existing estimates of misal-
location that assume a homogeneous production function. Further work could
generalize these findings by integrating the general methods of identifying het-
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erogeneous production function elasticities (like Li and Sasaki (2017) and Kasa-
hara, Schrimpf, and Suzuki (2023)) into the studies of misallocation of inputs.
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APPENDIX

A ADDITIONAL FIGURES AND TABLES

TABLE A.1: Production function estimates by land type

aggregate I II III IV V

land 0.427 0.396 0.388 0.300 0.625 0.448
(0.031) (0.039) (0.040) (0.046) (0.045) (0.040)

labor 0.189 0.126 0.397 0.433 0.159 0.218
(0.031) (0.053) (0.053) (0.070) (0.057) (0.058)

Int. Inputs 0.351 0.398 0.225 0.403 0.203 0.358
(0.041) (0.057) (0.039) (0.043) (0.040) (0.043)

Observations 14,705 2,605 1,608 2,710 4,649 3,133
R-squared 0.624 0.649 0.684 0.595 0.600 0.664
Season FEs Y Y Y Y Y Y
Village FEs Y Y Y Y Y Y

Note. The table presents the estimation of Equation 1 using 2SLS and instru-
ments described in Section 3.1. The “aggregate” column pools all agricultural
plots together. Columns I-V restrict the sample to each land type cluster.


