INSIGHTS FROM MACHINE LEARNING

Stepan Gordeev UConn

May 18, 2024

Midwest International Trade

Sandro Steinbach

• Preferential Trade Agreements (PTAs) increasingly dominate international trade governance

- Preferential Trade Agreements (PTAs) increasingly dominate international trade governance
 - multilateral negotiations through WTO \rightarrow bilateral PTA negotiations

- Preferential Trade Agreements (PTAs) increasingly dominate international trade governance
 - multilateral negotiations through WTO \rightarrow bilateral PTA negotiations
- PTAs are becoming increasingly deep and varied in design

- Preferential Trade Agreements (PTAs) increasingly dominate international trade governance
 - multilateral negotiations through WTO \rightarrow bilateral PTA negotiations
- PTAs are becoming increasingly deep and varied in design
 - PTAs seek to improve market access

- Preferential Trade Agreements (PTAs) increasingly dominate international trade governance
 - multilateral negotiations through WTO \rightarrow bilateral PTA negotiations
- PTAs are becoming increasingly deep and varied in design
 - PTAs seek to improve market access
 - tariffs already low \rightarrow # provisions, policy areas covered \uparrow

- Preferential Trade Agreements (PTAs) increasingly dominate international trade governance
 - multilateral negotiations through WTO \rightarrow bilateral PTA negotiations
- PTAs are becoming increasingly deep and varied in design
 - PTAs seek to improve market access
 - tariffs already low \rightarrow # provisions, policy areas covered \uparrow
 - non-tariff barriers: antidumping, rules of origin, ...

- Preferential Trade Agreements (PTAs) increasingly dominate international trade governance
 - multilateral negotiations through WTO \rightarrow bilateral PTA negotiations
- PTAs are becoming increasingly deep and varied in design
 - PTAs seek to improve market access
 - tariffs already low \rightarrow # provisions, policy areas covered \uparrow
 - non-tariff barriers: antidumping, rules of origin, ...
 - behind-the-border policies: IP protection, gov't procurement, ...

- Preferential Trade Agreements (PTAs) increasingly dominate international trade governance
 - multilateral negotiations through WTO \rightarrow bilateral PTA negotiations
- PTAs are becoming increasingly deep and varied in design
 - PTAs seek to improve market access
 - tariffs already low \rightarrow # provisions, policy areas covered \uparrow
 - non-tariff barriers: antidumping, rules of origin, ...
 - behind-the-border policies: IP protection, gov't procurement, ...
- THIS PAPER: what factors explain PTA formation, differences in PTA design?

- Preferential Trade Agreements (PTAs) increasingly dominate international trade governance
 - multilateral negotiations through WTO \rightarrow bilateral PTA negotiations
- PTAs are becoming increasingly deep and varied in design
 - PTAs seek to improve market access
 - tariffs already low \rightarrow # provisions, policy areas covered \uparrow
 - non-tariff barriers: antidumping, rules of origin, ...
 - behind-the-border policies: IP protection, gov't procurement, ...
- THIS PAPER: what factors explain PTA formation, differences in PTA design?
 - use an existing database of **classified PTA provisions**

- Preferential Trade Agreements (PTAs) increasingly dominate international trade governance
 - multilateral negotiations through WTO \rightarrow bilateral PTA negotiations
- PTAs are becoming increasingly deep and varied in design
 - PTAs seek to improve market access
 - tariffs already low \rightarrow # provisions, policy areas covered \uparrow
 - non-tariff barriers: antidumping, rules of origin, ...
 - behind-the-border policies: IP protection, gov't procurement, ...
- THIS PAPER: what factors explain PTA formation, differences in PTA design?
 - use an existing database of **classified PTA provisions**
 - collect a large # of country-pair-level observables as potential determinants

- Preferential Trade Agreements (PTAs) increasingly dominate international trade governance
 - multilateral negotiations through WTO \rightarrow bilateral PTA negotiations
- PTAs are becoming increasingly deep and varied in design
 - PTAs seek to improve market access
 - tariffs already low \rightarrow # provisions, policy areas covered \uparrow
 - non-tariff barriers: antidumping, rules of origin, ...
 - behind-the-border policies: IP protection, gov't procurement, ...
- THIS PAPER: what factors explain PTA formation, differences in PTA design?
 - use an existing database of **classified PTA provisions**
 - collect a large # of country-pair-level observables as potential determinants
 - problem is high-dimensional \rightarrow exploit machine learning

- Preferential Trade Agreements (PTAs) increasingly dominate international trade governance
 - multilateral negotiations through WTO \rightarrow bilateral PTA negotiations
- PTAs are becoming increasingly deep and varied in design
 - PTAs seek to improve market access
 - tariffs already low \rightarrow # provisions, policy areas covered \uparrow
 - non-tariff barriers: antidumping, rules of origin, ...
 - behind-the-border policies: IP protection, gov't procurement, ...
- THIS PAPER: what factors explain PTA formation, differences in PTA design?
 - use an existing database of **classified PTA provisions**
 - collect a large # of country-pair-level observables as potential determinants
 - problem is high-dimensional \rightarrow exploit machine learning
 - use random forests to identify important determinants of PTA formation, design
 - country-pair characteristics that are most predictive of PTA existence, inclusion of various provisions

- Preferential Trade Agreements (PTAs) increasingly dominate international trade governance
 - multilateral negotiations through WTO \rightarrow bilateral PTA negotiations
- PTAs are becoming increasingly deep and varied in design
 - PTAs seek to improve market access
 - tariffs already low \rightarrow # provisions, policy areas covered \uparrow
 - non-tariff barriers: antidumping, rules of origin, ...
 - behind-the-border policies: IP protection, gov't procurement, ...
- THIS PAPER: what factors explain PTA formation, differences in PTA design?
 - use an existing database of **classified PTA provisions**
 - collect a large # of country-pair-level observables as potential determinants
 - problem is high-dimensional \rightarrow exploit machine learning
 - use random forests to identify important determinants of PTA formation, design
 - country-pair characteristics that are **most predictive** of PTA existence, inclusion of various provisions
 - consistently **important determinants**: interdependence, geography, governance

determinants of PTA formation

determinants of PTA formation

• explore a specific mechanism: Baldwin and Jaimovich (2012), Mansfield and Milner (2012), Baccini and Urpelainen (2014)

DETERMINANTS OF PTA FORMATION

- explore a specific mechanism: Baldwin and Jaimovich (2012), Mansfield and Milner (2012), Baccini and Urpelainen (2014)
- compare several determinants: Baier and Bergstrand (2004), Bergstrand, Egger, and Larch (2016)

DETERMINANTS OF PTA FORMATION

- explore a specific mechanism: Baldwin and Jaimovich (2012), Mansfield and Milner (2012), Baccini and Urpelainen (2014)
- compare several determinants: Baier and Bergstrand (2004), Bergstrand, Egger, and Larch (2016)
- THIS PAPER: consider hundreds of determinants, extend approach to PTA design

DETERMINANTS OF PTA FORMATION

- explore a specific mechanism: Baldwin and Jaimovich (2012), Mansfield and Milner (2012), Baccini and Urpelainen (2014)
- compare several determinants: Baier and Bergstrand (2004), Bergstrand, Egger, and Larch (2016)
- THIS PAPER: consider hundreds of determinants, extend approach to PTA design

determinants of PTA design

DETERMINANTS OF PTA FORMATION

- explore a specific mechanism: Baldwin and Jaimovich (2012), Mansfield and Milner (2012), Baccini and Urpelainen (2014)
- compare several determinants: Baier and Bergstrand (2004), Bergstrand, Egger, and Larch (2016)
- THIS PAPER: consider hundreds of determinants, extend approach to PTA design

DETERMINANTS OF PTA DESIGN

• PTA depth: Gamso and Grosse (2021), Mattoo et al. (2020)

DETERMINANTS OF PTA FORMATION

- explore a specific mechanism: Baldwin and Jaimovich (2012), Mansfield and Milner (2012), Baccini and Urpelainen (2014)
- compare several determinants: Baier and Bergstrand (2004), Bergstrand, Egger, and Larch (2016)
- THIS PAPER: consider hundreds of determinants, extend approach to PTA design

- PTA depth: Gamso and Grosse (2021), Mattoo et al. (2020)
- explore a specific provision area: Raess et al. (2018), Kucik (2012), Lechner (2016)

DETERMINANTS OF PTA FORMATION

- explore a specific mechanism: Baldwin and Jaimovich (2012), Mansfield and Milner (2012), Baccini and Urpelainen (2014)
- compare several determinants: Baier and Bergstrand (2004), Bergstrand, Egger, and Larch (2016)
- THIS PAPER: consider hundreds of determinants, extend approach to PTA design

- PTA depth: Gamso and Grosse (2021), Mattoo et al. (2020)
- explore a specific provision area: Raess et al. (2018), Kucik (2012), Lechner (2016)
- THIS PAPER: explore determinants of hundreds of provisions simultaneously, identify most important mechanisms

DETERMINANTS OF PTA FORMATION

- explore a specific mechanism: Baldwin and Jaimovich (2012), Mansfield and Milner (2012), Baccini and Urpelainen (2014)
- compare several determinants: Baier and Bergstrand (2004), Bergstrand, Egger, and Larch (2016)
- THIS PAPER: consider hundreds of determinants, extend approach to PTA design

DETERMINANTS OF PTA DESIGN

- PTA depth: Gamso and Grosse (2021), Mattoo et al. (2020)
- explore a specific provision area: Raess et al. (2018), Kucik (2012), Lechner (2016)
- **THIS PAPER**: explore determinants of hundreds of provisions simultaneously, identify most important mechanisms

APPLYING MACHINE LEARNING (ML) TO PTA CONTEXT

DETERMINANTS OF PTA FORMATION

- explore a specific mechanism: Baldwin and Jaimovich (2012), Mansfield and Milner (2012), Baccini and Urpelainen (2014)
- compare several determinants: Baier and Bergstrand (2004), Bergstrand, Egger, and Larch (2016)
- THIS PAPER: consider hundreds of determinants, extend approach to PTA design

DETERMINANTS OF PTA DESIGN

- PTA depth: Gamso and Grosse (2021), Mattoo et al. (2020)
- explore a specific provision area: Raess et al. (2018), Kucik (2012), Lechner (2016)
- **THIS PAPER**: explore determinants of hundreds of provisions simultaneously, identify most important mechanisms

APPLYING MACHINE LEARNING (ML) TO PTA CONTEXT

• lasso to identify PTA provisions important for trade: Breinlich et al. (2022), Kim (2023)

DETERMINANTS OF PTA FORMATION

- explore a specific mechanism: Baldwin and Jaimovich (2012), Mansfield and Milner (2012), Baccini and Urpelainen (2014)
- compare several determinants: Baier and Bergstrand (2004), Bergstrand, Egger, and Larch (2016)
- THIS PAPER: consider hundreds of determinants, extend approach to PTA design

determinants of PTA design

- PTA depth: Gamso and Grosse (2021), Mattoo et al. (2020)
- explore a specific provision area: Raess et al. (2018), Kucik (2012), Lechner (2016)
- **THIS PAPER**: explore determinants of hundreds of provisions simultaneously, identify most important mechanisms

applying machine learning (ML) to PTA context

- lasso to identify PTA provisions important for trade: Breinlich et al. (2022), Kim (2023)
- THIS PAPER: random forest to identify factors important for provisions included in PTA

BACKGROUND

OF PTAS HAS SKYROCKETED

share of global trade happening between PTA members (data: EIA)

PTA DESIGN HAS BECOME MORE COMPLEX

average number of provisions in a PTA over time (data: DESTA)

PTA DESIGN HAS BECOME MORE DIVERSE

variance of provisions included in PTAs over time (data: DESTA)

UNDERSTANDING PTA DESIGN COMPLEXITY

- \cdot estimated effects of PTAs on trade \gg effects explainable by trade costs reductions
 - \rightarrow inclusion of non-tariff provisions more important for boosting trade
 - ightarrow understand why they are included in some PTAs and not others

UNDERSTANDING PTA DESIGN COMPLEXITY

- \cdot estimated effects of PTAs on trade \gg effects explainable by trade costs reductions
 - \rightarrow inclusion of non-tariff provisions more important for boosting trade
 - ightarrow understand why they are included in some PTAs and not others
- · different provisions improve different non-trade metrics
 - even democracy & human rights
 - $\rightarrow\,$ understand determinants of design to better understand the breadth of outcomes signatories are seeking

UNDERSTANDING PTA DESIGN COMPLEXITY

- \cdot estimated effects of PTAs on trade \gg effects explainable by trade costs reductions
 - \rightarrow inclusion of non-tariff provisions more important for boosting trade
 - ightarrow understand why they are included in some PTAs and not others
- · different provisions improve different non-trade metrics
 - even democracy & human rights
 - $\rightarrow\,$ understand determinants of design to better understand the breadth of outcomes signatories are seeking
- · understanding determinants of provisions matters for understanding their effects
 - estimation of PTA effects suffers from their endogenous formation
 - literature has instrumented for PTA formation with determinants exogeneous to studied outcome
 - ightarrow identify a wide range of design determinants to serve as IVs later

EMPIRICAL APPROACH

• which country-pair characteristics are highly predictive of...

- which country-pair characteristics are highly predictive of...
 - 1. PTA formation between country pair?

- which country-pair characteristics are highly predictive of...
 - 1. PTA formation between country pair?
 - 2. country pair's **PTA design** (inclusion of a particular provision in a PTA)?
- \cdot a supervised learning technique for classification and regression
 - Breiman (2001)

- \cdot a supervised learning technique for classification and regression
 - Breiman (2001)
- \cdot use RF to identify important determinants of PTA formation and design
 - formation: one RF model
 - design: one RF model per classified provision

- \cdot a supervised learning technique for classification and regression
 - Breiman (2001)
- \cdot use RF to identify important determinants of PTA formation and design
 - formation: one RF model
 - design: one RF model per classified provision

Procedure

- \cdot a supervised learning technique for classification and regression
 - Breiman (2001)
- \cdot use RF to identify important determinants of PTA formation and design
 - formation: one RF model
 - design: one RF model per classified provision

Procedure

• grow large # of decision trees, each using a bootstrap sample

- \cdot a supervised learning technique for classification and regression
 - Breiman (2001)
- \cdot use RF to identify important determinants of PTA formation and design
 - formation: one RF model
 - design: one RF model per classified provision

Procedure

- grow large # of decision trees, each using a bootstrap sample
- \cdot within each decision tree:

- \cdot a supervised learning technique for classification and regression
 - Breiman (2001)
- \cdot use RF to identify important determinants of PTA formation and design
 - formation: one RF model
 - design: one RF model per classified provision

Procedure

- grow large # of decision trees, each using a bootstrap sample
- $\cdot\,$ within each decision tree:
 - each node splits the data on one of the x variables, optimizing some measure of fit

- \cdot a supervised learning technique for classification and regression
 - Breiman (2001)
- \cdot use RF to identify important determinants of PTA formation and design
 - formation: one RF model
 - design: one RF model per classified provision

Procedure

- grow large # of decision trees, each using a bootstrap sample
- $\cdot\,$ within each decision tree:
 - each node splits the data on one of the x variables, optimizing some measure of fit
 - bottom "leaves" classify the observation into groups (0/1)

- \cdot a supervised learning technique for classification and regression
 - Breiman (2001)
- \cdot use RF to identify important determinants of PTA formation and design
 - formation: one RF model
 - design: one RF model per classified provision

Procedure

- grow large # of decision trees, each using a bootstrap sample
- \cdot within each decision tree:
 - each node splits the data on one of the x variables, optimizing some measure of fit
 - bottom "leaves" classify the observation into groups (0/1)
- to classify an observation: all trees classify it, majority wins

 \cdot naturally adapts to non-linearities and interactions in the data

- · naturally adapts to non-linearities and interactions in the data
 - infeasible to pre-specify flexible interactions, non-linearities with OLS

- · naturally adapts to non-linearities and interactions in the data
 - infeasible to pre-specify flexible interactions, non-linearities with OLS
- methods for dealing with missings

- · naturally adapts to non-linearities and interactions in the data
 - infeasible to pre-specify flexible interactions, non-linearities with OLS
- methods for dealing with missings
 - requiring no missings would make considering 100s of determinants infeasible

- · naturally adapts to non-linearities and interactions in the data
 - infeasible to pre-specify flexible interactions, non-linearities with OLS
- \cdot methods for dealing with missings
 - requiring no missings would make considering 100s of determinants infeasible
 - imputing data would create spurious variable importance results

- · naturally adapts to non-linearities and interactions in the data
 - infeasible to pre-specify flexible interactions, non-linearities with OLS
- methods for dealing with missings
 - requiring no missings would make considering 100s of determinants infeasible
 - imputing data would create spurious variable importance results
 - \rightarrow use Tang, Ishwaran (2017) method: only uses non-missing data for splits

- · naturally adapts to non-linearities and interactions in the data
 - infeasible to pre-specify flexible interactions, non-linearities with OLS
- methods for dealing with missings
 - requiring no missings would make considering 100s of determinants infeasible
 - imputing data would create spurious variable importance results
 - \rightarrow use Tang, Ishwaran (2017) method: only uses non-missing data for splits
 - − ► details

- · naturally adapts to non-linearities and interactions in the data
 - infeasible to pre-specify flexible interactions, non-linearities with OLS
- methods for dealing with missings
 - requiring no missings would make considering 100s of determinants infeasible
 - imputing data would create spurious variable importance results
 - \rightarrow use Tang, Ishwaran (2017) method: only uses non-missing data for splits
 - − ► details
- well-developed variable importance measures

- · naturally adapts to non-linearities and interactions in the data
 - infeasible to pre-specify flexible interactions, non-linearities with OLS
- methods for dealing with missings
 - requiring no missings would make considering 100s of determinants infeasible
 - imputing data would create spurious variable importance results
 - \rightarrow use Tang, Ishwaran (2017) method: only uses non-missing data for splits
 - − ► details
- well-developed variable importance measures
 - identifying important PTA provision determinants is the goal

- · naturally adapts to non-linearities and interactions in the data
 - infeasible to pre-specify flexible interactions, non-linearities with OLS
- methods for dealing with missings
 - requiring no missings would make considering 100s of determinants infeasible
 - imputing data would create spurious variable importance results
 - \rightarrow use Tang, Ishwaran (2017) method: only uses non-missing data for splits
 - − ► details
- well-developed variable importance measures
 - identifying important PTA provision determinants is the goal
- ▶ tuning

• use Mean Decrease Accuracy + Altmann et al. (2010) Permutation Importance

- use Mean Decrease Accuracy + Altmann et al. (2010) Permutation Importance
- Mean Decrease Accuracy:
 - conventional measure from *Breiman* (2001)
 - permutes variable's values, compares prediction error on this fake data
 - problems: mechanical biases, no absolute significance cutoff

- use Mean Decrease Accuracy + Altmann et al. (2010) Permutation Importance
- Mean Decrease Accuracy:
 - conventional measure from Breiman (2001)
 - permutes variable's values, compares prediction error on this fake data
 - problems: mechanical biases, no absolute significance cutoff
- Altmann et al. (2010):
 - $-\,$ permute the outcome variable many times \rightarrow re-construct the RF and VIMs for each permutation \rightarrow obtain null distributions
 - use p-value as corrected variable importance measure
 - benefits: corrects biases, provides statistical significance

- use Mean Decrease Accuracy + Altmann et al. (2010) Permutation Importance
- Mean Decrease Accuracy:
 - conventional measure from Breiman (2001)
 - permutes variable's values, compares prediction error on this fake data
 - problems: mechanical biases, no absolute significance cutoff
- Altmann et al. (2010):
 - $-\,$ permute the outcome variable many times \rightarrow re-construct the RF and VIMs for each permutation \rightarrow obtain null distributions
 - use p-value as corrected variable importance measure
 - **benefits**: corrects biases, provides statistical significance
- \cdot variable is an "important" predictor if Altmann permutation importance p-value < 1%

Data

• formation exercise: ECONOMIC INTEGRATION AGREEMENTS (EIA), NSF-Kellogg Inst., 2021

- formation exercise: ECONOMIC INTEGRATION AGREEMENTS (EIA), NSF-Kellogg Inst., 2021
 - most complete database of PTAs between country pairs

- formation exercise: ECONOMIC INTEGRATION AGREEMENTS (EIA), NSF-Kellogg Inst., 2021
 - most complete database of PTAs between country pairs
- main design exercise: DESIGN OF TRADE AGREEMENTS (DESTA), Dür et al., 2014

- formation exercise: ECONOMIC INTEGRATION AGREEMENTS (EIA), NSF-Kellogg Inst., 2021
 - most complete database of PTAs between country pairs
- main design exercise: DESIGN OF TRADE AGREEMENTS (DESTA), Dür et al., 2014
 - manually classify provisions in existing PTAs

- formation exercise: ECONOMIC INTEGRATION AGREEMENTS (EIA), NSF-Kellogg Inst., 2021
 - most complete database of PTAs between country pairs
- main design exercise: DESIGN OF TRADE AGREEMENTS (DESTA), Dür et al., 2014
 - manually classify provisions in existing PTAs
 - 710 PTAs

- formation exercise: ECONOMIC INTEGRATION AGREEMENTS (EIA), NSF-Kellogg Inst., 2021
 - most complete database of PTAs between country pairs
- main design exercise: DESIGN OF TRADE AGREEMENTS (DESTA), Dür et al., 2014
 - manually classify provisions in existing PTAs
 - 710 PTAs
 - ~300 provisions, we use 119 with enough variation

DATA: PTAs and Provisions

- formation exercise: ECONOMIC INTEGRATION AGREEMENTS (EIA), NSF-Kellogg Inst., 2021
 - most complete database of PTAs between country pairs
- main design exercise: DESIGN OF TRADE AGREEMENTS (DESTA), Dür et al., 2014
 - manually classify provisions in existing PTAs
 - 710 PTAs
 - ~300 provisions, we use 119 with enough variation
- robustness: DEEP TRADE AGREEMENTS (DTA), Mattoo et al., 2020

DATA: PTAs and Provisions

- formation exercise: ECONOMIC INTEGRATION AGREEMENTS (EIA), NSF-Kellogg Inst., 2021
 - most complete database of PTAs between country pairs
- main design exercise: DESIGN OF TRADE AGREEMENTS (DESTA), Dür et al., 2014
 - manually classify provisions in existing PTAs
 - 710 PTAs
 - ~300 provisions, we use 119 with enough variation
- robustness: DEEP TRADE AGREEMENTS (DTA), Mattoo et al., 2020
 - 274 PTAs

DATA: PTAs and Provisions

- formation exercise: ECONOMIC INTEGRATION AGREEMENTS (EIA), NSF-Kellogg Inst., 2021
 - most complete database of PTAs between country pairs
- main design exercise: DESIGN OF TRADE AGREEMENTS (DESTA), Dür et al., 2014
 - manually classify provisions in existing PTAs
 - 710 PTAs
 - ~300 provisions, we use 119 with enough variation
- robustness: DEEP TRADE AGREEMENTS (DTA), Mattoo et al., 2020
 - 274 PTAs
 - 937 provisions

1. identify 287 economic, geographic, and political factors that potentially influence PTA design

- 1. identify 287 economic, geographic, and political factors that potentially influence PTA design
 - factors found to be important determinants of overall PTA formation
 - > e.g. macroeconomic variables, PTA contagion, domestic politics

- 1. identify 287 economic, geographic, and political factors that potentially influence PTA design
 - factors found to be important determinants of overall PTA formation
 - > e.g. macroeconomic variables, PTA contagion, domestic politics
 - factors related to particular PTA provision policy areas
 - > e.g. innovation, energy use, labor markets, sectoral variables

- 1. identify 287 economic, geographic, and political factors that potentially influence PTA design
 - factors found to be important determinants of overall PTA formation
 - > e.g. macroeconomic variables, PTA contagion, domestic politics
 - factors related to particular PTA provision policy areas
 - > e.g. innovation, energy use, labor markets, sectoral variables
- 2. collect and merge data on potential determinants
 - economy, society: Penn World Tables, World Development Indicators
 - proximity, culture: CEPII Gravity, CEPII Language, GeoDist, UNCTADstat
 - trade, FDI: UN Comtrade, WITS, IMF CDIS, BACI
 - politics: Database of Political Institutions, Worldwide Governance Indicators
- 1. identify 287 economic, geographic, and political factors that potentially influence PTA design
 - factors found to be important determinants of overall PTA formation
 - > e.g. macroeconomic variables, PTA contagion, domestic politics
 - factors related to particular PTA provision policy areas
 - > e.g. innovation, energy use, labor markets, sectoral variables
- 2. collect and merge data on potential determinants
 - economy, society: Penn World Tables, World Development Indicators
 - proximity, culture: CEPII Gravity, CEPII Language, GeoDist, UNCTADstat
 - trade, FDI: UN Comtrade, WITS, IMF CDIS, BACI
 - politics: Database of Political Institutions, Worldwide Governance Indicators
- 3. construct all potential determinants at country-pair level

- 1. identify 287 economic, geographic, and political factors that potentially influence PTA design
 - factors found to be important determinants of overall PTA formation
 - > e.g. macroeconomic variables, PTA contagion, domestic politics
 - factors related to particular PTA provision policy areas
 - > e.g. innovation, energy use, labor markets, sectoral variables
- 2. collect and merge data on potential determinants
 - economy, society: Penn World Tables, World Development Indicators
 - proximity, culture: CEPII Gravity, CEPII Language, GeoDist, UNCTADstat
 - trade, FDI: UN Comtrade, WITS, IMF CDIS, BACI
 - politics: Database of Political Institutions, Worldwide Governance Indicators
- 3. construct all potential determinants at country-pair level
 - country-pair-level variables: as-is
 - > e.g. country-pair's intra-industry trade index

- 1. identify 287 economic, geographic, and political factors that potentially influence PTA design
 - factors found to be important determinants of overall PTA formation
 - > e.g. macroeconomic variables, PTA contagion, domestic politics
 - factors related to particular PTA provision policy areas
 - > e.g. innovation, energy use, labor markets, sectoral variables
- 2. collect and merge data on potential determinants
 - economy, society: Penn World Tables, World Development Indicators
 - proximity, culture: CEPII Gravity, CEPII Language, GeoDist, UNCTADstat
 - trade, FDI: UN Comtrade, WITS, IMF CDIS, BACI
 - politics: Database of Political Institutions, Worldwide Governance Indicators
- 3. construct all potential determinants at country-pair level
 - country-pair-level variables: as-is
 - > e.g. country-pair's intra-industry trade index
 - country-level continuous variables: mean, difference within pair
 - > e.g. absolute log GDP difference within pair

- 1. identify 287 economic, geographic, and political factors that potentially influence PTA design
 - factors found to be important determinants of overall PTA formation
 - > e.g. macroeconomic variables, PTA contagion, domestic politics
 - factors related to particular PTA provision policy areas
 - > e.g. innovation, energy use, labor markets, sectoral variables
- 2. collect and merge data on potential determinants
 - economy, society: Penn World Tables, World Development Indicators
 - proximity, culture: CEPII Gravity, CEPII Language, GeoDist, UNCTADstat
 - trade, FDI: UN Comtrade, WITS, IMF CDIS, BACI
 - politics: Database of Political Institutions, Worldwide Governance Indicators
- 3. construct all potential determinants at country-pair level
 - country-pair-level variables: as-is
 - > e.g. country-pair's intra-industry trade index
 - country-level continuous variables: mean, difference within pair
 - $>~{
 m e.g.}$ absolute log GDP difference within pair
 - country-level factor variables: same or not, combination
 - $>\,$ e.g. combination of political regimes within pair

RESULTS: PTA FORMATION

DETERMINANTS OF PTA FORMATION

$\cdot\,$ country-pair characteristics most predictive of PTAs:

- geographic proximity: distance, continents
- contagion: competition from third countries for export markets
- domestic politics: executive and legislative composition, features, tenure
- regulatory quality: accountability, ease of doing business
- trade: bilateral trade volume, intra-industry trade

DETERMINANTS OF PTA FORMATION

· country-pair characteristics most predictive of PTAs:

- geographic proximity: distance, continents
- contagion: competition from third countries for export markets
- domestic politics: executive and legislative composition, features, tenure
- regulatory quality: accountability, ease of doing business
- trade: bilateral trade volume, intra-industry trade
- overall: support most findings of studies focusing on a particular mechanism
 - but difference in regulatory quality in development not important

DETERMINANTS OF PTA FORMATION

· country-pair characteristics most predictive of PTAs:

- geographic proximity: distance, continents
- contagion: competition from third countries for export markets
- domestic politics: executive and legislative composition, features, tenure
- regulatory quality: accountability, ease of doing business
- trade: bilateral trade volume, intra-industry trade
- \cdot overall: support most findings of studies focusing on a particular mechanism
 - but difference in regulatory quality in development *not* important

▶ modifications & performance

 \cdot country pairs that are most likely to have a PTA according to RF, but don't

	Country Pair	PTA Probability
1	Dominican Republic, Panama	0.47
2	Colombia, Costa Rica	0.46
3	Bosnia & Herzegovina, Slovenia	0.45
4	Colombia, Dominican Republic	0.45
5	Norway, Russia	0.45
6	Albania, Greece	0.45
7	Ecuador, Panama	0.44
8	Australia, Germany	0.43
9	Albania, Spain	0.42
10	Austria, Bosnia & Herzegovina	0.42

 \cdot country pairs that are most likely to have a PTA according to RF, but don't

Country Pair		PTA Probability	
1	Dominican Republic, Panama	0.47	
2	Colombia, Costa Rica	0.46	
3	Bosnia & Herzegovina, Slovenia	0.45	
4	Colombia, Dominican Republic	0.45	
5	Norway, Russia	0.45	
6	Albania, Greece	0.45	
7	Ecuador, Panama	0.44	
8	Australia, Germany	0.43	
9	Albania, Spain	0.42	
10	Austria, Bosnia & Herzegovina	0.42	

• 8/10 are making progress toward a PTA

 \cdot country pairs that are most likely to have a PTA according to RF, but don't

Country Pair		PTA Probability	
1	Dominican Republic, Panama	0.47	
2	Colombia, Costa Rica	0.46	
3	Bosnia & Herzegovina, Slovenia	0.45	
4	Colombia, Dominican Republic	0.45	
5	Norway, Russia	0.45	
6	Albania, Greece	0.45	
7	Ecuador, Panama	0.44	
8	Australia, Germany	0.43	
9	Albania, Spain	0.42	
10	Austria, Bosnia & Herzegovina	0.42	

- 8/10 are making progress toward a PTA
 - 2: new PTA not recorded in EIA

• country pairs that are most likely to have a PTA according to RF, but don't

Country Pair		PTA Probability	
1	Dominican Republic, Panama	0.47	
2	Colombia, Costa Rica	0.46	
3	Bosnia & Herzegovina, Slovenia	0.45	
4	Colombia, Dominican Republic	0.45	
5	Norway, Russia	0.45	
6	Albania, Greece	0.45	
7	Ecuador, Panama	0.44	
8	Australia, Germany	0.43	
9	Albania, Spain	0.42	
10	Austria, Bosnia & Herzegovina	0.42	

- 8/10 are making progress toward a PTA
 - 2: new PTA not recorded in EIA
 - 3, 6, 9, 10: candidates for EU accession

 \cdot country pairs that are most likely to have a PTA according to RF, but don't

Country Pair		PTA Probability	
1	Dominican Republic, Panama	0.47	
2	Colombia, Costa Rica	0.46	
3	Bosnia & Herzegovina, Slovenia	0.45	
4	Colombia, Dominican Republic	0.45	
5	Norway, Russia	0.45	
6	Albania, Greece	0.45	
7	Ecuador, Panama	0.44	
8	Australia, Germany	0.43	
9	Albania, Spain	0.42	
10	Austria, Bosnia & Herzegovina	0.42	

- 8/10 are making progress toward a PTA
 - 2: new PTA not recorded in EIA
 - 3, 6, 9, 10: candidates for EU accession
 - 4: both in various stages of integration with CAPRICOM

 \cdot country pairs that are most likely to have a PTA according to RF, but don't

Country Pair		PTA Probability	
1	Dominican Republic, Panama	0.47	
2	Colombia, Costa Rica	0.46	
3	Bosnia & Herzegovina, Slovenia	0.45	
4	Colombia, Dominican Republic	0.45	
5	Norway, Russia	0.45	
6	Albania, Greece	0.45	
7	Ecuador, Panama	0.44	
8	Australia, Germany	0.43	
9	Albania, Spain	0.42	
10	Austria, Bosnia & Herzegovina	0.42	

- 8/10 are making progress toward a PTA
 - 2: new PTA not recorded in EIA
 - 3, 6, 9, 10: candidates for EU accession
 - 4: both in various stages of integration with CAPRICOM
 - 7: negotiating a partial scope agreement

 $\cdot\,$ country pairs that are most likely to have a PTA according to RF, but don't

	Country Pair	PTA Probability
1	Dominican Republic, Panama	0.47
2	Colombia, Costa Rica	0.46
3	Bosnia & Herzegovina, Slovenia	0.45
4	Colombia, Dominican Republic	0.45
5	Norway, Russia	0.45
6	Albania, Greece	0.45
7	Ecuador, Panama	0.44
8	Australia, Germany	0.43
9	Albania, Spain	0.42
10	Austria, Bosnia & Herzegovina	0.42

- 8/10 are making progress toward a PTA
 - 2: new PTA not recorded in EIA
 - 3, 6, 9, 10: candidates for EU accession
 - 4: both in various stages of integration with CAPRICOM
 - 7: negotiating a partial scope agreement
 - 8: Australia negotiating FTA with EU

RESULTS: PTA DESIGN

PREDICTIVE PERFORMANCE

- \cdot compare performance of RF models for each provision with alternative models
 - 2/3 training sample, 1/3 test sample
 - RF outperforms a single tree and conventional logistic regression

	Full Sample		Non-NA Sub-Sample			
	Random Forest	Tree	Logit	Random Forest	Tree	Logit
25th %-ile	0.123	0.212	0.432	0.055	0.107	0.079
median	0.164	0.277	0.456	0.079	0.145	0.114
75th %-ile	0.227	0.376	0.477	0.115	0.211	0.157

PREDICTIVE PERFORMANCE

- \cdot compare performance of RF models for each provision with alternative models
 - 2/3 training sample, 1/3 test sample
 - RF outperforms a single tree and conventional logistic regression

	Full Sample		Non-NA Sub-Sample			
	Random Forest	Tree	Logit	Random Forest	Tree	Logit
25th %-ile	0.123	0.212	0.432	0.055	0.107	0.079
median	0.164	0.277	0.456	0.079	0.145	0.114
75th %-ile	0.227	0.376	0.477	0.115	0.211	0.157

▶ 00B performance

RESULTS: TOP 10 DETERMINANTS OF OVERALL DESIGN

• rank country-pair characteristics by % of provisions each is a significant predictor of

- template, contagion: competitive pressure to copy provisions not to lose market share in an export market

 details
- **geography**: content of PTAs is different depending on proximity and location of partners

RESULTS: TOP 10 DETERMINANTS OF OVERALL DESIGN

• rank country-pair characteristics by % of provisions each is a significant predictor of

- template, contagion: competitive pressure to copy provisions not to lose market share in an export market

 details
- **geography**: content of PTAs is different depending on proximity and location of partners
 - ▶ alternative variable sets ▶ distribution of determinants ▶ DTA

• use random forests to identify important determinants of PTA formation & design

- use random forests to identify important determinants of PTA formation & design
 - interdependence, geographic, regulatory measures emerge as leading

- use random forests to identify important determinants of PTA formation & design
 - interdependence, geographic, regulatory measures emerge as leading
- · limitations & future research

- use random forests to identify important determinants of PTA formation & design
 - interdependence, geographic, regulatory measures emerge as leading
- · limitations & future research
 - treat multilateral PTAs as sets of bilateral agreements between country pairs

- use random forests to identify important determinants of PTA formation & design
 - interdependence, geographic, regulatory measures emerge as leading
- · limitations & future research
 - treat multilateral PTAs as sets of bilateral agreements between country pairs
 - for consistency with literature and to permit straightforward analysis on rectangular data

- use random forests to identify important determinants of PTA formation & design
 - interdependence, geographic, regulatory measures emerge as leading
- · limitations & future research
 - treat multilateral PTAs as sets of bilateral agreements between country pairs
 - for consistency with literature and to permit straightforward analysis on rectangular data
 - but it ignores the multilateral components: size and composition of a PTA being negotiated

- use random forests to identify important determinants of PTA formation & design
 - interdependence, geographic, regulatory measures emerge as leading
- · limitations & future research
 - treat multilateral PTAs as sets of bilateral agreements between country pairs
 - for consistency with literature and to permit straightforward analysis on rectangular data
 - but it ignores the *multi*lateral components: size and composition of a PTA being negotiated
 - → multilateral agreement level: OLS/RF using feature moments across members, or ML methods supporting variable feature sets

- use random forests to identify important determinants of PTA formation & design
 - interdependence, geographic, regulatory measures emerge as leading
- · limitations & future research
 - treat multilateral PTAs as sets of bilateral agreements between country pairs
 - for consistency with literature and to permit straightforward analysis on rectangular data
 - but it ignores the *multi*lateral components: size and composition of a PTA being negotiated
 - → multilateral agreement level: OLS/RF using feature moments across members, or ML methods supporting variable feature sets
 - RFs highlight characteristics important for PTA design, but don't provide a coherent story of why they are important

- use random forests to identify important determinants of PTA formation & design
 - interdependence, geographic, regulatory measures emerge as leading

· limitations & future research

- treat multilateral PTAs as sets of bilateral agreements between country pairs
 - for consistency with literature and to permit straightforward analysis on rectangular data
 - but it ignores the *multi*lateral components: size and composition of a PTA being negotiated
 - → multilateral agreement level: OLS/RF using feature moments across members, or ML methods supporting variable feature sets
- RFs highlight characteristics important for PTA design, but don't provide a coherent story of why they are important
 - RFs don't impose linearity on the data \rightarrow pick up non-linearities/interactions

- use random forests to identify important determinants of PTA formation & design
 - interdependence, geographic, regulatory measures emerge as leading

· limitations & future research

- treat multilateral PTAs as sets of bilateral agreements between country pairs
 - for consistency with literature and to permit straightforward analysis on rectangular data
 - but it ignores the *multi*lateral components: size and composition of a PTA being negotiated
 - → multilateral agreement level: OLS/RF using feature moments across members, or ML methods supporting variable feature sets
- RFs highlight characteristics important for PTA design, but don't provide a coherent story of why they are important
 - RFs don't impose linearity on the data \rightarrow pick up non-linearities/interactions
 - but can't provide a single coefficient summarizing a variable's effect

- use random forests to identify important determinants of PTA formation & design
 - interdependence, geographic, regulatory measures emerge as leading
- limitations & future research
 - treat multilateral PTAs as sets of bilateral agreements between country pairs
 - for consistency with literature and to permit straightforward analysis on rectangular data
 - but it ignores the *multi*lateral components: size and composition of a PTA being negotiated
 - → multilateral agreement level: OLS/RF using feature moments across members, or ML methods supporting variable feature sets
 - RFs highlight characteristics important for PTA design, but don't provide a coherent story
 of why they are important
 - $-\,$ RFs don't impose linearity on the data \rightarrow pick up non-linearities/interactions
 - but can't provide a single coefficient summarizing a variable's effect
 - \rightarrow motivate future research to focus on individual mechanisms related to identified determinants

RF TUNING

parameters

- N (number of trees): 500
- *M*_{try} (number of variables to consider at each split), *nodesize* (number of obs in terminal node): *k*-fold cross-validation

back

RF TUNING

\cdot parameters

- N (number of trees): 500
- *M_{try}* (number of variables to consider at each split), *nodesize* (number of obs in terminal node): *k*-fold cross-validation
- \cdot splitting statistic: AUC-ROC
 - prob. that a random "true 0" and "true 1" are both classified correctly
 - due to imbalanced data, outperforms standard misclassification rate
 - even when overall performance measured with misclassification rate

back

RF IMPLEMENTATION: MISSINGS

- problem: most observations have at least some missing predictors
 - collect hundreds of potential determinants from dozens of datasets
 - each dataset has its own data coverage

RF IMPLEMENTATION: MISSINGS

- problem: most observations have at least some missing predictors
 - collect hundreds of potential determinants from dozens of datasets
 - each dataset has its own data coverage
- standard solutions:
 - throw away data (only use rows with no missing columns, or only use columns with no missing rows)
 - $\rightarrow~$ throw away almost all data
 - or impute missings
 - ightarrow VIMs become unreliable: imputed variable contains info from other variables
RF IMPLEMENTATION: MISSINGS

- problem: most observations have at least some missing predictors
 - collect hundreds of potential determinants from dozens of datasets
 - each dataset has its own data coverage
- standard solutions:
 - throw away data (only use rows with no missing columns, or only use columns with no missing rows)
 - $\rightarrow~$ throw away almost all data
 - or impute missings
 - ightarrow VIMs become unreliable: imputed variable contains info from other variables
- Tang, Ishwaran (2017): "on-the-fly imputation" for RFs
 - at each node, only non-missing data is used to come up with a split, then missings are split randomly
 - \rightarrow uses all data without imputation
 - variables with many missings naturally get lower VIM values

• large literature documents contagion/interdependence of PTAs

- large literature documents contagion/interdependence of PTAs
- likely mechanism:
 - country *j* is an important export market for *i*, *k*
 - country k signs a PTA with j
 - $\rightarrow i$ has an incentive to also sign a PTA with *j*, or risk losing market share

- large literature documents contagion/interdependence of PTAs
- likely mechanism:
 - country *j* is an important export market for *i*, *k*
 - country k signs a PTA with j
 - $\rightarrow i$ has an incentive to also sign a PTA with *j*, or risk losing market share
- we extend this to contagion of **provisions**, following the common specification of contagion:

- \cdot large literature documents contagion/interdependence of PTAs
- likely mechanism:
 - country *j* is an important export market for *i*, *k*
 - country k signs a PTA with j
 - $\rightarrow i$ has an incentive to also sign a PTA with *j*, or risk losing market share
- we extend this to contagion of **provisions**, following the common specification of contagion:

$$Contagion_{p,ij,t} = \left(\frac{\text{bilateral exports}_{ij}}{\text{total exports}_i}\right) \sum_{k \neq i,j} \left(\frac{\text{bilateral exports}_{kj}}{\text{total imports}_j}\right) \mathbf{1}_{p,jkt}$$

FORMATION DETAILS & PERFORMANCE

- + 480,738 country-pair-5yr observations ightarrow computational simplifications
 - 10 (rather than all) random splitting points considered at each node
 - use random 10% of sample for MDA values at each iteration

FORMATION DETAILS & PERFORMANCE

- + 480,738 country-pair-5yr observations \rightarrow computational simplifications
 - 10 (rather than all) random splitting points considered at each node
 - use random 10% of sample for MDA values at each iteration
- highly imbalanced data (3.5% minority class) \rightarrow O'Brien and Ishwaran (2019) quantile classifier
 - effectively boosts the predictions of the minority class

FORMATION DETAILS & PERFORMANCE

- + 480,738 country-pair-5yr observations \rightarrow computational simplifications
 - 10 (rather than all) random splitting points considered at each node
 - use random 10% of sample for MDA values at each iteration
- highly imbalanced data (3.5% minority class) \rightarrow O'Brien and Ishwaran (2019) quantile classifier
 - effectively boosts the predictions of the minority class
- evaluate performance with out-of-bag misclassification
 - for each observation, only the trees that did not have it in their bootstrap sample are used

00				
Overall	0 (Absent)	1 (Present)	Share of 1s	
0.255	0.264	0.021	0.035	

OOB PERFORMANCE

- evaluate performance with **out-of-bag** misclassification
 - for each observation, only the trees that did not have it in their bootstrap sample are used

	00			
	Overall	0 (Absent)	1 (Present)	Share of 1s
25th %-ile	0.120	0.000	0.390	0.148
median	0.160	0.006	0.702	0.212
75th %-ile	0.226	0.034	0.948	0.359

RESULTS: DISTRIBUTION OF DETERMINANT IMPORTANCES

 \cdot distribution of variables by the % of provisions each is a significant predictor of

RESULTS: ALTERNATIVE VARIABLE SETS

• alternative way to isolate important variables: run RFs with subsets of country-pair characteristics

All	Excluding Top 10	Economy	Geography	History, Culture	Interdependence	Politics	Trade
0.160	0.186	0.191	0.148	0.210	0.137	0.179	0.187

RESULTS: ALTERNATIVE VARIABLE SETS

• alternative way to isolate important variables: run RFs with subsets of country-pair characteristics

All	Excluding Top 10	Economy	Geography	History, Culture	Interdependence	Politics	Trade
0.160	0.186	0.191	0.148	0.210	0.137	0.179	0.187

- interdependence, geography again have highest predictive power
 - even outperform the original RF with complete set of variables

RESULTS: TOP 10 DETERMINANTS OF OVERALL DESIGN, DTA

bacl