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governance

multilateral negotiations through WTO — bilateral PTA negotiations

- PTAs are becoming increasingly deep and varied in design

PTAs seek to improve market access

tariffs already low — # provisions, policy areas covered 1
non-tariff barriers: antidumping, rules of origin, ...
behind-the-border policies: IP protection, gov't procurement, ...

+ THIS PAPER:

use an existing database of classified PTA provisions
collect a large # of country-pair-level observables as potential determinants
problem is high-dimensional — exploit machine learning
use to identify of PTA formation, design
— country-pair characteristics that are most predictive of PTA existence, inclusion of various
provisions
consistently important determinants: interdependence, geography, governance
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- estimated effects of PTAs on trade >> effects explainable by trade costs reductions

— inclusion of non-tariff provisions more important for boosting trade

— understand why they are included in some PTAs and not others

- different provisions improve different non-trade metrics

— even democracy & human rights

— understand determinants of design to better understand the breadth of outcomes
signatories are seeking

- understanding determinants of provisions matters for understanding their effects

— estimation of PTA effects suffers from their endogenous formation

— literature has instrumented for PTA formation with determinants exogeneous to studied
outcome

— identify a wide range of design determinants to serve as IVs later
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- a supervised learning technique for classification and regression
— Breiman (2001)

- use RF to identify important determinants of PTA formation and design
— formation: one RF model
— design: one RF model per classified provision

PROCEDURE

- grow large # of decision trees, each using a
bootstrap sample
- within each decision tree:
— each node splits the data on one of the x
variables, optimizing some measure of fit
— bottom “leaves” classify the observation into
groups (0/1)

- to classify an observation: all trees classify it, Figure 1: decision tree example
majority wins 9/18
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— — use Tang, Ishwaran (2017) method: only uses non-missing data for splits

— » details

- well-developed variable importance measures
— identifying important PTA provision determinants is the goal
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- Mean Decrease Accuracy:

— conventional measure from Breiman (2007)
— permutes variable’s values, compares prediction error on this fake data
— problems: mechanical biases, no absolute significance cutoff

- Altmann et al. (2010):

— permute the outcome variable many times — re-construct the RF and VIMs for each
permutation — obtain null distributions

— use p-value as corrected variable importance measure

— benefits: corrects biases, provides statistical significance

- variable is an “important” predictor if Altmann permutation importance p-value < 1%
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— most complete database of PTAs between country pairs

- main design exercise: DESIGN OF TRADE AGREEMENTS (DESTA), Diir et al., 2014

— manually classify provisions in existing PTAs

— 710 PTAs

— ~300 provisions, we use 119 with enough variation

- robustness: DEEP TRADE AGREEMENTS (DTA), Mattoo et al., 2020

— 274 PTAs
— 937 provisions
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> e.g. country-pair’s intra-industry trade index
— country-level continuous variables: mean, difference within pair
> e.g. absolute log GDP difference within pair
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> e.g. combination of political regimes within pair 13/18
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» modifications & performance
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- country pairs that are most likely to have a PTA according to RF, but don’t

Country Pair PTA Probability
1 Dominican Republic, Panama 0.47
2 Colombia, Costa Rica 0.46
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8 Australia, Germany 0.43
9 Albania, Spain 0.42
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- country pairs that are most likely to have a PTA according to RF, but don’t

Country Pair PTA Probability
1 Dominican Republic, Panama 0.47
2 Colombia, Costa Rica 0.46
3 Bosnia & Herzegovina, Slovenia 0.45
4 Colombia, Dominican Republic 0.45
5 Norway, Russia 0.45
6 Albania, Greece 0.45
7 Ecuador, Panama 0.44
8 Australia, Germany 0.43
9 Albania, Spain 0.42
10  Austria, Bosnia & Herzegovina 0.42

- 8/10 are making progress toward a PTA
— 2: new PTA not recorded in EIA
— 3,6,9, 10: candidates for EU accession
4: both in various stages of integration with CAPRICOM
— 7: negotiating a partial scope agreement
8: Australia negotiating FTA with EU

15/18
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- compare performance of RF models for each provision with alternative models

— 2/3 training sample, 1/3 test sample

— RF outperforms a single tree and conventional logistic regression

Full Sample

Non-NA Sub-Sample

Random Forest Tree  Logit Random Forest Tree Logit
25th %-ile 0.123 0.212 0.432 0.055 0.107 0.079
median 0.164 0.277 0.456 0.079 0.145 0.114
75th %-ile 0.227 0.376 0.477 0.115 0.211 0.157
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- rank country-pair characteristics by % of provisions each is a significant predictor of

Continent, combination

Template, mean

Price level of consumption (PPP / exchange rate), log mean
Template, difference

Regulatory quality, mean

Pair's bilateral trade in services, log mean

Share of trade in services, mean

Human capital index (PWT), mean

Contagion, difference

Value of imports, manufacturing, log mean
1 1 1 1 1
0 25 50 75 100

% of provisions

- template, contagion: competitive pressure to copy provisions not to lose market
share in an export market » details

- geography: content of PTAs is different depending on proximity and location of
partners
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- template, contagion: competitive pressure to copy provisions not to lose market
share in an export market » details

- geography: content of PTAs is different depending on proximity and location of
partners

» alternative variable sets » distribution of determinants » DTA s
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— interdependence, geographic, regulatory measures emerge as leading

- limitations & future research
— treat multilateral PTAs as sets of bilateral agreements between country pairs
— for consistency with literature and to permit straightforward analysis on rectangular data
— but it ignores the multilateral components: size and composition of a PTA being negotiated
— : OLS/RF using feature moments across members, or ML methods
supporting variable feature sets
— RFs highlight characteristics important for PTA design, but don’t provide a coherent story
of why they are important
— RFs don't impose linearity on the data — pick up non-linearities/interactions
— but can't provide a single coefficient summarizing a variable’s effect
— motivate future research to related to identified determinants
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+ parameters

— N (number of trees): 500
— My (number of variables to consider at each split), nodesize (number of obs in terminal
node): k-fold cross-validation
- splitting statistic: AUC-ROC
— prob. that a random “true 0" and “true 1” are both classified correctly
— due to imbalanced data, outperforms standard misclassification rate
— even when overall performance measured with misclassification rate
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- problem: most observations have at least some missing predictors
— collect hundreds of potential determinants from dozens of datasets
— each dataset has its own data coverage
- standard solutions:
— throw away data (only use rows with no missing columns, or only use columns with no
missing rows)
— throw away almost all data
— or impute missings
— VIMs become unreliable: imputed variable contains info from other variables
- Tang, Ishwaran (2017): “on-the-fly imputation” for RFs
— at each node, only non-missing data is used to come up with a split, then missings are

split randomly
— — uses all data without imputation

— variables with many missings naturally get lower VIM values
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- large literature documents contagion/interdependence of PTAs

- likely mechanism:

— countryj is an important export market for i, k

— country k signs a PTA with j

— i has an incentive to also sign a PTA with j, or risk losing market share

- we extend this to contagion of provisions, following the common specification of
contagion:

bilateral exports;; bilateral exports,,;
) () e
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— use random 10% of sample for MDA values at each iteration
- highly imbalanced data (3.5% minority class) — O'Brien and Ishwaran (2019) quantile
classifier
— effectively boosts the predictions of the minority class
- evaluate performance with out-of-bag misclassification
— for each observation, only the trees that did not have it in their bootstrap sample are
used

OOB Misclassification

Overall 0 (Absent) 1 (Present) Share of 1s

0.255 0.264 0.021 0.035




- evaluate performance with out-of-bag misclassification

— for each observation, only the trees that did not have it in their bootstrap sample are
used

OOB Misclassification

Overall 0 (Absent) 1 (Present) Share of 1s

25th %-ile  0.120 0.000 0.390 0.148
median 0.160 0.006 0.702 0.212
75th %-ile 0226 0.034 0.948 0.359
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- alternative way to isolate important variables: run RFs with subsets of country-pair
characteristics
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- alternative way to isolate important variables: run RFs with subsets of country-pair
characteristics

Excluding History, -
A E h | p T
i Top 10 conomy  Geography Culture nterdependence olitics rade
0.160 0.186 0.191 0.148 0.210 0.137 0.179 0.187

- interdependence, geography again have highest predictive power
— even outperform the original RF with complete set of variables



Continent, combination

Template, mean

Population-weighted distance between most populated cities
Template, difference

Contagion, mean

Price level of consumption (PPP / exchange rate), log mean
Contagion, difference

Pair's trade share in their trade with everyone

Foreign direct investment, net inflows (% of GDP), mean

Human capital index (PWT), mean
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