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Abstract

Preferential trade agreements (PTAs) have emerged as the dominant form of
international trade governance. Provisions included in PTAs are increasingly
numerous, broad in their purview, deep in their scope, and varied between
agreements. We study the economic, political, and geographic determinants
of PTA design differences. For each of the hundreds of classified PTA provi-
sions, we consider 287 country-pair characteristics as potential determinants,
covering many individual mechanisms the literature has studied. We employ
random forests, a supervised machine learning technique, to handle this high
dimensionality and complexity. We use a robust variable importance measure
to identify the most critical determinants of the inclusion of each PTA provi-
sion. Contagion due to competition for export markets, geographic proxim-
ity, and governance quality emerge as essential determinants of PTA design.
These results motivate future exploration of individual mechanisms our exer-
cise points to.

Keywords: Preferential trade agreements, machine learning, provisions, trade
integration

JEL Codes: F13; F14; F15

∗ We thank Deexith Reddy for excellent research assistance. We are also grateful to Armen Khederlarian, Dongin Kim,
Julia Seither, and the participants of the ICEE at PSU-Altoona for their comments and suggestions. This work was
supported by the U.S. Department of Agriculture, National Institute of Food and Agriculture through the Agriculture
and Food Research Initiative Award 2022-67023-36399. The findings and conclusions in this work are those of the
authors and should not be construed to represent any official USDA or U.S. Government determination or policy.

† Agricultural and Resource Economics, University of Connecticut, Email: stepan.gordeev@uconn.edu, Corresponding
Author.

‡ Agribusiness and Applied Economics, North Dakota State University, Email: sandro.steinbach@ndsu.edu.

mailto:stepan.gordeev@uconn.edu
mailto:sandro.steinbach@ndsu.edu


DETERMINANTS OF PTA DESIGN: INSIGHTS FROM MACHINE LEARNING 1

1 Introduction

Preferential TradeAgreements (PTAs) increasingly dominate international trade governance, while

multilateral negotiations through the World Trade Organization have given some way to bilateral

or regional PTA negotiations, whose number has grown from less than 50 in the early 1990s to over

360 in 2023 (WTO 2023).1 This expansion has occurred despite tariffs being at their lowest-ever lev-

els between most countries. Indeed, modern PTAs are no longer dealing mainly with tariff reduc-

tions. Instead, they are increasingly broad in the number of non-tariff policy areas their provisions

cover, such as intellectual property rights protection, environmental laws, or public procurement

rules. They are also increasingly deep in how far they go in harmonizing the rules of international

trade. Those agreements vary widely in their provisions, reflecting different quantitative levels

and qualitative features of trade liberalization and regulatory integration that signatories commit

to. Given the growing role of PTAs, making sense of their increasing complexity and diversity is

crucial for understanding modern trade institutions. However, isolating the determinants of PTA

differences is challenging because PTA design is complex, and its determinants could have unex-

pected non-linear and interacting effects. This paper uses random forests, a supervised machine

learning technique, to handle this complexity and identify the economic, geographic, cultural, and

political factors that predict differences in PTA design. This exercise motivates and informs future

research that would delve deeper into individual mechanisms related to potential determinants

identified by random forests.

Studying the determinants of PTA design requires its systematization. Two existing datasets

provide an expansive classification of provisions included in preferential trade agreements: De-

sign of Trade Agreements, abbreviated as DESTA below (Dür, Baccini, and Elsig 2014), and Deep

Trade Agreements, abbreviated as DTA (Mattoo, Rocha, and Ruta 2020). These two teams devel-

1 Although regional integration is on the rise, the WTO still plays an important role for international trade governance.
Recent WTO achievements include the implementation of the Information Technology Agreement II (2015) and the
Trade Facilitation Agreement (2017), ongoing negotiations on the Electronic Commerce Initiative (2020), and opera-
tionalization of the Multi-Party Interim Appeal Arbitration Arrangement (2020). Additionally, the conclusion of the
Services Domestic Regulation (2021) and the Investment Facilitation for Development (2023) initiatives underscore
the WTO’s adaptability and continued relevance in addressing evolving global trade challenges.
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oped classifications of PTA provisions and manually encoded whether each classified provision

was included in a given PTA. We use these classified provisions as measures of PTA design dif-

ferences. For each classified PTA provision, we construct a statistical model that predicts whether

the provision is included in a given PTA based on the characteristics of the pair of countries that

signed the agreement. Whether a pair of countries choose to add a particular provision to their

PTA can be dictated by a broad range of factors: their domestic economic and political situations,

existing trade relationships, shared cultural or institutional features, and many others. We assem-

ble 287 factors observed at country- and country-pair-level, collected from dozens of data sources.

The existing literature informs the list of factors we consider on the determinants of PTA formation

and the nascent literature on PTA design differences. Once the statistical model is constructed, we

identify the factors that contribute the most to the model’s predictive capacity and are thus the

prime candidates for the important determinants of PTA design.

We employ random forests both for the estimation of each statistical model and for identify-

ing factors that are most predictive of each provision. The random forest algorithm, developed

by Breiman (2001), is an effective machine learning tool for prediction.2 A random forest is con-

structed by “growing” many individual decision trees and aggregating their predictions. This

algorithm is gaining popularity in economics due to its excellent predictive performance in a wide

variety of problems, many of which the classic Ordinary Least Squares regression struggles with

(Varian 2014; Mullainathan and Spiess 2017). Random forests have several advantages that make

them well-suited for identifying the important determinants of PTA provisions among hundreds

of potential factors. First, the algorithm deals well with high-dimensional data in which the num-

ber of predictors (potential determinants) is large without underdeterminacy. Second, random

forests naturally adapt to non-linearities and interactions between predictors in the data without

requiring the econometrician to impose a flexible parametric structure ex-ante, which would be

infeasible with our high-dimensional data. Third, extensions of random forests allow for miss-

ing values without invalidating the variable importance measures: a crucial advantage given the

many datasets with disparate coverage that we source the potential determinant variables from

2 See Biau and Scornet (2016), Schonlau and Zou (2020), or Ziegler and König (2014) for excellent reviews.
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(Tang and Ishwaran 2017). Finally, random forests have well-developed procedures for variable

selection, facilitating our task of identifying the important determinants of PTA provisions among

a multitude of potential factors: we employ the permutation importance method developed by

Altmann et al. (2010).

In the initial exercise, we estimate a random forest to predict whether a PTA exists between a

given pair of countries in a given period, which is a question the literature has extensively studied

using conventional econometric techniques (Baier and Bergstrand 2004; Bergstrand, Egger, and

Larch 2016). The random forest identifies geographic proximity, average regulatory quality, trade

volume, and domestic political regimes as the most predictive of whether countries form a PTA. In

the main exercise, we then estimate random forests to predict the inclusion of each classified PTA

provision into an agreement between a particular country pair and aggregate the results. Firstly,

we identify the country-pair characteristics that are the best predictors of the largest number of

provisions, making them influence the overall PTA design the most. Several measures of geo-

graphic proximity are highly predictive of differences in PTA design, suggesting that neighbors

are interested in different dimensions of trade integration compared to remote partners. Interde-

pendence of PTA content between trading partners or nations competing for the same export mar-

kets emerges as another strong predictor of PTA design. This finding extends the existing results

showing the importance of contagion for PTA formation (Baldwin 1993; Baldwin and Jaimovich

2012; Chen and Joshi 2010). Secondly, we repeat this analysis at a more fine-grained level, sum-

marizing the critical determinants of common policy areas like intellectual property protection or

anti-dumping regulation. Metrics of government quality and political competitiveness are highly

relevant for several of these areas. Throughout this analysis, we link our results to individual

mechanisms studied by the literature.

While we employ random forests to identify the factors most predictive of PTA formation and

differences in PTA design, leading us to often refer to them as “determinants”, it is important to

stress that our empirical method does not identify causal effects of these variables on PTA out-

comes. A variable that is crucial for the prediction of PTA formation or inclusion of certain pro-

visions may contribute to prediction because it truly causes the PTA outcome, because it itself is

affected by the PTA outcome (or its anticipation), or because it is correlated with another omit-
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ted predictor. Some of the determinants identified by random forests and discussed above link

to individual mechanisms of PTA formation and design studied in the literature, but they cannot

prove the importance of these mechanisms. Therefore, we view these machine-learning-derived

results as primarily suggesting the most fruitful avenues of further research that can hone in on

identifying the causal effect of each individual suggested mechanism one at a time.

A growing literature explores the economic and political determinants of PTA formation, iden-

tifying factors that make it more likely for a pair of countries to have signed an agreement. Concep-

tualizing PTAs as a dichotomous variable, whether an agreement between the two countries exists

or not, loses the complexity of their design but makes the analysis feasible. Baier and Bergstrand

(2004) show that simple geographic (like distance) and economic (like GDP level and similarity)

factors related to the potential welfare benefits of trade liberalization can explain most existing

PTAs. A significant strand of the literature highlights the importance of domestic interest groups,

primarily exporters, supporting a PTA: Baldwin (1993) suggests that a newly signed PTA between

two foreign countries hurts the competitiveness of domestic exporters, who push their govern-

ment to sign a PTA of their own. Such interdependence, or contagion, in PTA formation is relevant

empirically (Egger and Larch 2008; Baldwin and Jaimovich 2012; Baccini and Dür 2012; Chen and

Joshi 2010). Multi-national corporations may be no less critical in lobbying for PTAs: MNCs in

developed nations seek to open new markets for investment, while developing countries, in turn,

seek to attract this investment (Baccini, Dür, and Elsig 2018; Manger 2009; Büthe and Milner 2008;

Gamso and Grosse 2021). Domestic politics also seem to play a significant role: countries with

autocracies or a large number of veto players sign fewer PTAs (Mansfield and Milner 2012), while

leaders in developing countries may use PTAs as a way to commit to reform in a competitive polit-

ical environment (Baccini and Urpelainen 2014). While most studies in this literature hypothesize

a particular mechanism of PTA formation and then test it empirically, some combine a range of

potential determinants informed by the literature in their empirical model to achieve the best per-

formance in predicting PTA formation or its timing (Baier and Bergstrand 2004; Bergstrand, Egger,

and Larch 2016). Our paper makes several contributions to this second strand of the literature.

First, it considers a broader selection of potential economic, political, geographic, and cultural de-

terminants of PTA formation, leveraging the ability of random forests to consider many predictors
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and their interactions. Second, it explicitly conducts variable selection to identify which potential

factors are the most critical determinants of PTA formation, leveraging variable importance mea-

sures developed for random forests. Our most novel contribution, however, is not to the question

of PTA formation but to PTA design.

Recently, the literature has shifted from exploring whether a PTA exists between a pair of coun-

tries to understanding why PTAs differ in their design. Existing studies primarily follow two ap-

proaches to dealing with PTA design complexity. Some reduce this complexity to a single index

of PTA breadth or depth (like the number of provisions included) and analyze the determinants

of variation in this measure across agreements (Gamso and Grosse 2021; Mattoo, Rocha, and Ruta

2020; Orefice and Rocha 2014; Hofmann, Osnago, and Ruta 2019). Others deal with the complex-

ity by focusing on a single policy area, like rules of origin, escape clauses, or labor protection, and

exploring a particular mechanism determining whether a provision covering that area is included

in the PTA (Raess, Dür, and Sari 2018; Kucik 2012; Lechner 2016). We contribute to this literature

by analyzing PTA design while keeping its complexity largely intact: we identify the critical de-

terminants of hundreds of individual PTA provisions and use them to suggest the most relevant

mechanisms affecting the entirety of PTA design. Our broad exercise is designed not to delve deep

into a particular mechanism but to identify several areas of important determinants, informing fu-

ture research into individual mechanisms. Understanding the differences in the contents of PTAs

can help identify the breadth of objectives that negotiating parties seek and diagnose the obstacles

to deeper international integration.

Our contributions to the two strands of the literature discussed above are made possible by em-

ploying advancedmachine-learning methods. PTA design is high-dimensional, the number of po-

tential determinants is significant, and these determinants tend to have non-linear and interacting

effects (Baccini 2019). Classical econometric techniques tend to struggle with these features, while

machine learning tends to excel in comparison (Varian 2014; Mullainathan and Spiess 2017), mak-

ing it potentially effective in studying PTAs. This approach is leveraged by Breinlich et al. (2021)

and Kim and Steinbach (2023), who apply machine learning techniques (lasso and several exten-

sions) to identify PTA provisions that are most important for increasing trade flows. Our paper

instead uses anothermachine learning technique (random forests coupledwith several extensions)
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to understand the causes, not consequences, of PTA design differences. Machine learningmethods

applied to high-dimensional and non-linear economic problems can identify promising directions

for future theoretical and econometric research to focus on.

2 Background

Multilateral trade negotiations through the WTO have largely stalled. The Doha Round of nego-

tiations launched in 2001, but the member countries have not yet agreed. Instead, treaties with

restrictive membership have proliferated to fill the void. A Preferential Trade Agreement (PTA) is

an international treaty with restrictive membership that seeks to improve the mutual market ac-

cess of its members (Limão 2016). As Figure 1a shows, the fraction of global trade between country

pairs sharing a trade agreement grew steadily from 12% in the early 1960s to over 50% in 2023.3

Figure 1b highlights the drastic upward jump in the number of new PTAs signed each year (as

counted in DESTA), from below 10 in most years between 1950 and 1990 to 20-30 in most years in

the 1990s. The formation of new agreements has slowed since then but is still elevated.

Not only are preferential trade agreements becomingmorewidespread, but they are also chang-

ing. Figure 1c shows the drastic change in the average number of provisions (as classified in

DESTA) included in the agreement. Until the 1990s, most PTAs had nomore than 10-20 provisions.

Since the 1990s, however, that number has skyrocketed to over 100. Trade agreements no longer

deal primarily with negotiating trade cost reductions. Instead, they are increasingly concerned

with harmonizing a far broader set of international trade rules and domestic regulation relevant

to trade: intellectual property rights protection, government procurement rules, environmental

regulation, and many other policy areas (Mattoo, Rocha, and Ruta 2020). Due to their increasing

complexity, agreements are also becoming more varied in their design. As Figure 1d shows, the

variance in the set of provisions included in PTAs skyrocketed in the 1990s. Figures 1b and 1d also

indicate that the complexity of new agreements has hit a snag in the last couple of years. It is too

3 Appendix Figure A.1 displays the fraction of country-pairs sharing an agreement, unweighted by their trade: it was
growing steadily between the 1950s and 1970s but has skyrocketed starting in the 1990s from less than 5% in 1990 to
18% in 2017.
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early to say if that is a temporary dip or another regime change. Therefore, our paper focuses on

the trend of growing complexity that lasted from the 1990s to at least the 2010s.4

The estimated impact effects of PTAs on trade far exceed what can be expected from the mod-

erate trade cost reductions they include, suggesting that the non-tariff provisions account for much

of the trade-boosting effect of PTAs (Limão 2016). Furthermore, the growing breadth of PTA pro-

visions reflects the scope of their impact. PTAs have been found not only to boost trade but also

foreign direct investment (Baltagi, Egger, and Pfaffermayr 2008), survival of democratic regimes

(Liu and Ornelas 2014), and even human rights protection (Hafner-Burton 2013)—as long as rele-

vant provisions are part of the agreement. Understanding the determinants of provision inclusion

can help understand the breadth of outcomes that signatories are seeking—andwhy theymay seek

some outcomes and not others. Understanding the determinants of this increased complexity and

diversity of PTA design also matters in understanding its effects. Estimating the impact of PTA

formation or design differences on trade or other outcomes suffers from the endogeneity of coun-

tries’ decisions to form those PTAs. A strand of the literature tackles this problem by instrumenting

PTA formation with important determinants of PTA formation that are plausibly exogenous to the

outcome variable being studied. A similar approach has been used for studying the effect of PTA

depth (Osnago, Rocha, andRuta 2017; Mattoo,Mulabdic, andRuta 2022). Identifying awide range

of essential determinants not only of PTA formation but also design can thus aid future work in

this line by providing potential instruments to choose from.

3 Empirical Methods

3.1 Random Forests

Classification Trees and Random Forests—The random forest is a supervised machine learning al-

gorithm introduced by Breiman (2001). Analogously to a regression, the algorithm constructs a

statistical model that predicts the value of an outcome variable based on the values of provided

4 The patterns of PTA evolution discussed in this section using the DESTA dataset are robust to using the DTA dataset:
see Appendix Figures A.2, A.3, and A.4, the DTA analogs of Figures 1b, 1c, and 1d respectively.
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predictor variables. In our application, the prediction task is binary classification: the forest must

predict whether a given country-pair has a particular PTA provision. A random forest is an ensem-

ble model comprised of many smaller models, namely classification trees. Each tree is trained on

a random bootstrap sample of the data, where the sample is drawn with replacement, and its size

equals the size of the original data. To come upwith a single prediction of the outcome variable for

a given observation, the random forest collects the predictions of all individual trees and picks the

majority prediction. Each classification tree in a random forest consists of nodes that repeatedly

partition the data into branches. Each node splits the data into two groups based on the value of

a particular predictor variable. The predictor variable and value to split on are picked to optimize

some goodness-of-fit measure, i.e., to achieve the highest contrast between the two branches in the

expected value of the outcome variable. Not all predictor variables are considered in the search,

however: at each node, only a random subset 𝑀𝑡𝑟𝑦 of predictor variables is picked for the search.

Then, all possible cutoff values (for continuous variables) or all partitions of groups into two sets

(for categorical variables) are searched over to find the best split.

Figure 2 provides a stylized illustration. At the first node, the algorithm chooses to split on the

value of continuous variable 𝑋3 at cutoff 𝑎, sending observations with 𝑋3 ≤ 𝑎 to the left branch and

those with 𝑋3 > 𝑎 to the right one. Once the data is split into two branches, the process repeats at

the two newly created nodes. The left branch is split again on the categorical variable 𝑋1, and the

right branch on the binary variable 𝑋7. With each consecutive split, the number of observations

going down each branch to the following node drops. Once the number of observations at a node

falls to some cutoff value 𝑛𝑜𝑑𝑒𝑠𝑖𝑧𝑒, the branching stops: the majority value of the binary outcome

variable of observations at this terminal node provides the prediction of the branch.5 To obtain the

tree’s prediction of the outcome value of a new observation, the observation is “dropped” down

the tree, following the branches according to its predictor values. Then, the observation arrives

at one of the terminal nodes, generating the prediction. There are two sources of randomness

in a random forest: the random bootstrap sample used by each tree and the random selection

of predictors to consider for the role of the splitting variable at each node. These two features

5 If the outcome variable is continuous, the tree is called a regression tree, and the average of values in the final node
provides the prediction.
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mitigate the propensity of individual trees to overfit and allow random forests to achieve high out-

of-sample predictive performance compared to other machine learning methods (Caruana and

Niculescu-Mizil 2006).

𝑋3

𝑋1

0 1

𝑋7

0 1

≤ 𝑎

{𝑏} {𝑐, 𝑑}

> 𝑎

{1} {0}

Figure 2: Illustration of aClassificationTree
Note. The figure provides an example of a simple
classification tree with two splits levels. Based on
the observable characteristics {𝑋𝑖}𝑖, the tree predicts
whether the outcome variable is 0 or 1 for each ob-
servation. Only three characteristics are used as pre-
dictors: 𝑋1, 𝑋3, and 𝑋7.

Random Forests are Well-Suited for Studying the Determinants of PTA Formation and Design—Random

forests have several advantages that make them a better choice for identifying the essential de-

terminants of PTA design than ordinary least squares (OLS) regression or alternative machine

learning methods (Ziegler and König 2014; Schonlau and Zou 2020). Firstly, random forests natu-

rally adapt to non-linearities and interactions between predictors in the data without requiring the

econometrician to impose the parametric structure ex-ante. This feature is critical to allow us to

consider hundreds of potential determinants without hypothesizing any particular relationships

beforehand. Allowing for a broad array of possible interactions and non-linearities between 287

potential determinants in OLS would balloon the number of predictors and make estimation im-

possible. Random forests adapt to interactions and non-linearities they find on the fly through

the flexible structure of repeated node splits. In Section 5.2 below, we show that random forests

significantly outperform logistic regression in out-of-sample prediction of PTA provisions.

Secondly, one extension of random forests, described below, allows for the presence of miss-

ing values without relying on imputation that may have spurious effects on variable importance

measures. This feature is essential for our exercise, which combines hundreds of potential determi-
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nants from many data sources: few country-pair-year observations have no missing values in any

of these. OLS would require restricting the sample to this small subset of observations or restrict-

ing the set of predictors only to those with universal coverage. The method of handling missing

values in random forests allows us to avoid these extremes and maximize the information utilized

in estimation.

Finally, random forests have well-developed procedures for variable selection, facilitating our

task of identifying the critical determinants of PTA provisions among many potential factors dis-

cussed in Section 3.2. An extensive literature on variable selection measures for random forests

distinguishes them from many alternative machine learning techniques (e.g. Strobl et al. 2007;

Gregorutti, Michel, and Saint-Pierre 2017; Altmann et al. 2010; Nembrini, König, and Wright 2018;

Janitza, Celik, and Boulesteix 2018).

At the same time, random forests have limitations compared to conventional econometricmeth-

ods. Their theoretical properties are poorly understood: their black box nature complicates math-

ematical analysis (Biau and Scornet 2016). There are limited results on the consistency of random

forests with particular data-generating processes and certain simplifications in the algorithm itself

(Scornet, Biau, and Vert 2015; Scornet 2016). There are also negative results identifying examples

in which random forests are not consistent (Tang, Garreau, and von Luxburg 2018). Furthermore,

while random forests excel at prediction, the way they arrive at this prediction is not transparent:

we return to this issue in Section 5.

Dealing with Missing Observations—Collecting hundreds of variables to serve as potential determi-

nants from many different sources inevitably runs into the problem of disparate data coverage.

Various data sources cover different country-year combinations, and the gaps in their data avail-

ability do not overlap perfectly. With each added variable, the share of country-pair-year observa-

tions with missing values in at least some potential determinants inexorably grows. To deal with

this data challenge, we employ on-the-fly-imputation proposed by Ishwaran et al. (2008) and Tang

and Ishwaran (2017) that allows random forests to work with missing data without relying on im-

putation (despite its name, this technique involves no imputation when used purely for handling

missing values). When constructing each tree node, themodified algorithm ignoresmissing values

when finding the best splitting point and calculating the splitting statistic. Once the node is con-



DETERMINANTS OF PTA DESIGN: INSIGHTS FROM MACHINE LEARNING 12

structed, each missing value is (temporarily) replaced with a random draw from the distribution

of non-missing values of this variable to determine which branch to send it to. The replacements

are reset immediately so as not to influence further splits.

This approach avoids the drawbacks of the two standard solutions to the problem of missing

values (Scheffer 2002). The first standard solution is to throw out the missing data, which means

using rows (country-pair-year observations) with nomissing values in any of the columns (poten-

tial determinants) or only using columns with no missing values in any of the rows. Both would

throw out most of the determinants we observe, leaving only a small subset of the data suffering

from severe selection. This method is unsuitable for our application because considering many

potential determinants is one of the critical objectives. In contrast, on-the-fly-imputation allows us

to maximize the information used since it does not discard observations with some missing val-

ues. The second conventional solution to the problem of missing data is to impute the missing

values. This approach does not discard any information, but it complicates the interpretation of

variable importance measures since imputed values of a given variable now contain information

on relationships with other variables absent from the raw data. This method is unsuitable because

it precludes reliable identification of the critical determinants of PTA formation and design. On-

the-fly-imputation, in contrast, does not perturb the variable importance measures since only the

non-missing values are used to create splits.

Tuning—The random forest algorithm has three key parameters: 𝑁, the number of trees in the

forest; 𝑀𝑡𝑟𝑦, the number of predictors randomly considered as splitting candidates at each node;

and 𝑛𝑜𝑑𝑒𝑠𝑖𝑧𝑒, the number of observations in each cell of the tree below which the cell is not split

further. Higher 𝑁 is always better but more computationally costly. We set 𝑁 = 500 as raising it to

1,000 yields only a negligible improvement in predictive performance. We tune 𝑀𝑡𝑟𝑦 and 𝑛𝑜𝑑𝑒𝑠𝑖𝑧𝑒

using 𝑘-fold tuning on a 2-dimensional parameter grid.6 At each grid point, the data is split into

𝑘 sub-samples, or folds. We use 𝑘 = 3. Consequently, three random forests are estimated: each

uses two of the folds as training data and one as testing data. The computed prediction error is

thus out-of-sample for each of the forests. The prediction error is averaged across the three random

6 See Bischl et al. (2021) for an overview of this and other tuning methods.
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forests. The parameter grid point with the lowest prediction error is picked. We conduct the tuning

procedure for each provision separately.7

The final choice is the splitting statistic the algorithm seeks to optimize when searching for

the best split at each tree node. We use the area under the receiver operating characteristic curve

(AUC-ROC), which has the interpretation of the probability that a random PTA that does have

the provision in question and a random PTA that does not have the provision are both classified

correctly: (Ling, Huang, and Zhang 2003). The more conventional default is Gini impurity, which

can be interpreted as the probability that a random PTA is classified wrongly (has the provision

in question but was sent down the “0” branch, or vice versa) at the split (Biau and Scornet 2016).

However, because the data we work with is highly imbalanced (for most provisions, the share of

PTAs that don’t have the provision far exceeds the share that do), we find that AUC-ROC pro-

duces considerably better predictive performance (measured with misclassification error) of the

whole forest for almost all provisions. By equally weighting the true positives and negatives, AUC-

ROC works better with imbalanced data and produces better predictive performance of the whole

forest—even though we measure this performance with the unweighted misclassification rate.

3.2 Variable Importance Measures

Constructing the random forest models and assessing their performance in predicting PTA forma-

tion and design is a necessary first step of our analysis but not its ultimate goal. What is more

central is identifying the country-level and country-pair-level characteristics that are the most pre-

dictive of PTA formation and design. Random forests are largely appealing for our purposes be-

cause of the well-developed literature on variable importance measures (VIMs). These measures

rank the predictor variables by their contribution to the predictive performance of the forest. We

select Permutation Importance developed byAltmann et al. (2010) as the variable importancemea-

sure: it involves computing the Mean Decrease Accuracy of each variable and then comparing this

value to a null distribution of Mean Decrease Accuracies obtained through repeated permutation.

7 Although we use tuned parameters in our analysis, the procedure provided only a small improvement in predictive
performance relative to the conventional defaults of 𝑀𝑡𝑟𝑦 = √𝑀, where 𝑀 is the total number of predictor variables,
and 𝑛𝑜𝑑𝑒𝑠𝑖𝑧𝑒 = 1.
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We describe both components below.

Mean Decrease Accuracy—Mean Decrease Accuracy (MDA) is a commonly used variable impor-

tance measure proposed in the original Breiman (2001) paper.8 For a given predictor 𝑋, it ran-

domly reshuffles the vector of values of 𝑋 associated with each observation. For each tree, it then

computes the prediction error obtained by running this fake data (with all variables but 𝑋 retain-

ing their true order) down the tree. It obtains the difference between this fake error (using the

permuted 𝑋) and the original prediction error (without 𝑋 being permuted). The average differ-

ence across all trees is the Mean Decrease Accuracy of variable 𝑋. We use the out-of-bag misclas-

sification rate as the conventional measure of prediction error used by the algorithm. For each

observation, only the trees that did not happen to have the observation in their bootstrap training

sample (i.e., the observation is “out-of-bag” for them) participate in generating the random forest’s

prediction, exploiting the fact that each bootstrap sample leaves out 1
𝑒 ≈ 36.8% of observations on

average. This approach is less prone to overfitting than using the unadjustedmisclassification rate.

MDA is commonly used for random forests and other applications, but it has two limitations that

are of particular concern to us. Firstly, it is mechanically biased in favor of predictors that offer

many potential splitting points (Strobl et al. 2007).9 Continuous variables or categorical variables

with many categories receive a higher value regardless of how informative they are of the outcome

variable. Secondly,MDA is biased against predictors that belong to clusters of correlated predictors

(Gregorutti, Michel, and Saint-Pierre 2017). Finally, MDA allows one to rank variables by impor-

tance but provides no natural cutoffs for splitting variables into ”important” and ”unimportant”

ones.

Permutation Importance—Altmann et al. (2010) developed Permutation Importance, a method of

computing p-values for any VIM while simultaneously removing its biases. The core idea is an

application of randomization-based inference: the method permutes the outcome variable vec-

tor (randomly reshuffling the mapping between observations and outcome variable values) many

times, re-estimating the random forest and the VIM of each variable on every permutation. For a

8 Mean Decrease Accuracy is sometimes called Permutation Importance. We elect the former name to avoid confusion
with the method developed by Altmann et al. (2010), also called Permutation Importance.

9 Mean Decrease Impurity, another commonly used VIM, is even more susceptible to this bias.
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given predictor 𝑋, the random permutation breaks any association 𝑋 had with the outcome vari-

able. The distribution of 𝑋’s MDAvalues across these permuted random forests thus composes the

distribution of null importances. The position of 𝑋’s MDA value from the original non-permuted

random forest in this null distribution allows us to compute its p-value directly: the p-value cap-

tures the probability of observing 𝑋’s MDA importance if 𝑋 had no association with the outcome.

This p-value constitutes the corrected variable importancemeasure: it does not suffer from the bias

of conventional measures identified by Strobl et al. (2007), does not suffer from the bias against

correlated predictors identified by Gregorutti, Michel, and Saint-Pierre (2017), and provides an

absolute metric of variable importance. One drawback of this method is its computational cost,

as each random forest of interest requires constructing many random forests (we conduct 100 per-

mutations for each provision). See Janitza, Celik, and Boulesteix (2018) and Nembrini, König,

andWright (2018) for faster heuristic methods that also remove biases and provide p-values while

yielding results similar toAltmann et al. (2010). Still, we use the technique byAltmann et al. (2010)

as it is more theoretically grounded than these heuristic methods. The Variable Importance Mea-

sure we use is the p-value of the Permutation Importance, which uses Mean Decrease Accuracy

within each permuted iteration.

4 Data

4.1 Preferential Trade Agreements and Their Provisions

We rely on three complementary datasets cataloging and classifying PTAs. We exploit the broad

coverage of the EIA dataset in our analysis of the determinants of PTA formation. We then explore

the features and determinants of PTA design using the classified provisions of DESTA and DTA,

relying on the former for our primary analysis due to its larger sample size.

EIA—The most complete database of trade agreements between country pairs is the NSF-Kellogg

Institute Data Base on Economic Integration Agreements (EIA) (NSF-Kellogg Institute 2021). It

indexes agreements between every country pair from 1950 to 2017. The level of integration catego-

rizes each trade deal. We use this dataset tomeasurewhether a PTA exists between a given country

pair in a given year. EIA covers the largest number of agreements but provides no information on
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the provisions of each agreement, precluding analysis of variation in PTA design. The following

two datasets fill this gap.

DESTA—Design of International Trade Agreements (Dür, Baccini, and Elsig 2014), or DESTA, pro-

vides a manual classification of provisions included in 697 PTAs. The team behind the dataset de-

veloped a classification of 313 provisions, enumerating whether each provision is included in each

PTA. The dataset is regularly updated: we use the 2022 vintage.

DTA—Deep Trade Agreements (Mattoo, Rocha, and Ruta 2020), or DTA, provides a more fine-

grained look at the contents of agreements, classifying PTA clauses into 937 provisions. The cost

of this level of detail is a smaller sample size of classified PTAs, which is 274. This smaller number

of agreements is why we rely on DTA for robustness checks rather than the primary analysis.

4.2 Potential Determinants

We assemble an extensive array of observable characteristics of countries and country pairs. The

random forest algorithm will search among these factors for essential determinants of PTA forma-

tion and differences in PTA design. The inclusion of many potential determinants is motivated by

existing studies on the importance of those variables for PTA formation. Our empirical strategy

allows us to verify their importance for PTA formation in the presence of many other potential

factors and to study their ability to explain individual provisions in signed PTAs. Other potential

determinants are motivated by the growing number of provisions discussing a particular topic.

For example, the rise of intellectual property rights protection clauses leads us to include several

measures of countries’ innovation activity, human capital, and property rights protection, as well

as the differentials in these measures between the two PTA signatories. Below, we summarize the

main groups of potential determinants, the motivation for including them, and the data sources

that provide them.

Economy—Early studies like Baier and Bergstrand (2004) showed that simple economic variables

like GDP level and similarity can explain much of PTA formation. To explain PTA design, how-

ever, we need to include more detailed measures. PTA provisions are often sector-specific, so our

analysis includes sectoral agriculture, manufacturing, and services shares. More and more pro-

visions protect labor rights, intellectual property, and the environment. So, we include measures
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of labor share in compensation, inequality, innovation, human capital, emissions, energy use and

sources, and natural resource endowments. Most of these aggregate and sectoral measures are

available from Penn World Tables (Feenstra, Inklaar, and Timmer 2015) and World Development In-

dicators (The World Bank 2023b).

Proximity—The proximity of two countries to each other is one of the most significant predictors

of PTA formation (Baier and Bergstrand 2004; Bergstrand, Egger, and Larch 2016), so we include

measures of physical proximity and shipping connectivity. Many provisions attempt to harmonize

institutions between two countries, motivating us to include measures of linguistic and institu-

tional similarity and shared colonial past: these may influence how much regulatory harmoniza-

tion is needed. These measures of geographic, institutional, and cultural proximity are available

from CEPII Gravity (Conte, Cotterlaz, and Mayer 2022), CEPII Language (Melitz and Toubal 2014),

GeoDist (Mayer and Zignago 2011), UNCTADstat (United Nations Conference on Trade and De-

velopment 2023).

Trade—We include measures of existing trade flows, tariff levels, and trade openness, as the extent

of existing trade and remaining tariff trade barriers may influence whether a PTA focuses on tariffs

or non-tariff regulation. We include unilateral and bilateral trade imbalance, as some studies find a

prominent role of signs and magnitudes of trade imbalances in explaining PTA formation and fea-

tures (Grossman and Helpman 1995; Kucik 2012; Facchini, Silva, and Willmann 2021). A growing

literature shifts attention to the role of multinational corporations and global value chains in lead-

ing the push for greater trade integration (Chase 2008; Baccini, Dür, and Elsig 2018; Manger 2009;

Büthe andMilner 2008; Gamso and Grosse 2021; Manger 2015; Raimondi et al. 2023), leading us to

include measures of foreign direct investment flows and intra-industry trade. These measures are

constructed from data available fromUN Comtrade (United Nations 2023),WITS (TheWorld Bank

2023a), BACI (Gaulier and Zignago 2010), CEPII Gravity (Conte, Cotterlaz, and Mayer 2022), IMF

CDIS (International Monetary Fund 2023).

Interdependence—Alarge literature has documented contagion and interdependence of agreements,

likely due to exporter lobbying, as an important determinant of PTA formation (Baldwin 1993;

Baldwin and Jaimovich 2012; Baccini and Dür 2012; Egger and Larch 2008; Chen and Joshi 2010).

If country 𝑗 is an important export destination for countries 𝑖 and 𝑘, and country 𝑘 signs a PTAwith
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country 𝑗, then country 𝑖 has the incentive to emulate its “competitor” and also sign an agreement

with country 𝑗, or else risk losing competitiveness in this export market. To capture this chan-

nel, we include a measure of contagion following this literature, primarily Baldwin and Jaimovich

(2012). For country 𝑖 considering an agreement with country 𝑗 in time 𝑡, the contagion index of

PTA property 𝑝 is the number of agreements with this property that 𝑗 has with other nations 𝑘,

weighted by the importance of imports from 𝑘 for 𝑗 and by the importance of 𝑗 as an export market

for 𝑖:

Contagion𝑝,𝑖𝑗,𝑡 = ⎛⎜
⎝

bilateral exports𝑖𝑗,𝑡
total exports𝑖,𝑡

⎞⎟
⎠

∑
𝑘≠𝑖,𝑗,𝑡

⎛⎜
⎝

bilateral exports𝑘𝑗,𝑡
total imports𝑗,𝑡

⎞⎟
⎠
1𝑝,𝑗𝑘,𝑡 (1)

where 1𝑝,𝑗𝑘,𝑡 is an indicator function encoding the presence of PTA property 𝑝 between countries 𝑗

and 𝑘 in year 𝑡. To represent the mechanism of PTA contagion studied in the formation literature,

we construct the Contagion index using 𝑝 = existence of a PTA. Our data, however, also allows us

to extend this analysis to the question of interdependence of provisions. If countries 𝑗 and 𝑘 include

a particular provision in their agreement, protecting its market share may require 𝑖 not only to sign

an agreement of its own with 𝑗 but also to include similar provisions. Therefore, when estimating

a random forest on the determinants of PTA formation or a particular provision, we include the

contagion index for the property in question. When using the contagion index as a predictor of the

presence of provision 𝑝 in the PTA between 𝑖 and 𝑗 signed in year 𝑡, we lag the index by one year to

avoid its contamination by countries 𝑘 that are joining the same treaty (which is possible for PTAs

with > 2 members).

Interdependence may be driven not only by competitive pressures but also by simple imitation.

Modern trade agreements are highly complex, and a nation entering a new agreementmay lift part

of the structure from its existing agreements with third countries. We adopt a measure of such

“template” effects used in the literature (Osnago, Rocha, and Ruta 2017; Mattoo, Mulabdic, and

Ruta 2022) to our setting. Highly related to the contagion index, the template index for country

𝑖 considering an agreement with country 𝑗 in time 𝑡 with property 𝑝 is the number of agreements

with this property that 𝑖 has with other nations 𝑘, weighted by the importance of 𝑘 as an export

market for 𝑖:
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Template𝑝,𝑖𝑗,𝑡 = ∑
𝑖,𝑘≠𝑗,𝑡

⎛⎜
⎝

bilateral exports𝑖𝑘,𝑡
total exports𝑖,𝑡

⎞⎟
⎠
1𝑝,𝑖𝑘,𝑡 (2)

Politics—Many studies emphasize the political aspect in the political economy of PTA formation

and design. Domestic political pressures (or lack thereof) and leanings appear to play a large role

in the formation of PTAs (Mansfield and Milner 2012; Baccini and Urpelainen 2014; Raess, Dür,

and Sari 2018). So, we test the role they may also play in PTA design by including a broad range

of measures of domestic political regime and political competitiveness. An increasing number of

PTA provisions focus on harmonizing domestic regulations relating to property rights, govern-

ment procurement, etc. (Gamso and Grosse 2021; Lechner 2016). So, we include measures of the

quality of governance in these fields. These variables are compiled from theDatabase of Political In-

stitutions (Cruz, Keefer, and Scartascini 2021), Worldwide Governance Indicators (Kaufmann, Kraay,

and Mastruzzi 2010), and World Development Indicators (The World Bank 2023b).

Country-Pair Measures—Some of the measures discussed above (like bilateral trade or FDI flows)

are inherently measured at the country-pair level. Most potential determinants, however, are mea-

sured at the country level and need to be aggregated to the country-pair level before they can be

used as explanatory variables in country-pair-level PTA formation and design analysis. Gener-

ally, we construct two aggregated variables from each country-level measure: an average of the

two countries’ values (either in levels or in logs, depending on context) and a difference (in levels

or logs). This simple construction lets us capture a broad scope of mechanisms previously dis-

cussed in the literature. A clear example is the diversity of results on the effects of GDP levels and

differences. Baier and Bergstrand (2004) find that country-pairs whose GDPs are bigger (high av-

erage) or more similar (low difference) are more likely to form PTAs. At the same time, Baccini

and Urpelainen (2014) show that domestic political pressures may lead developing countries’ gov-

ernments to sign PTAs with partners much richer than themselves (high difference). Orefice and

Rocha (2014) find that PTAs are deeper whenmembers trade more intermediate inputs, especially

if the PTA is across development levels (high difference). Our specification allows us to flexibly

capture such effects and interactions—not only for GDP but for all variables we collect—and to

explore their role in influencing PTA formation and the specifics of PTA design.

Appendix Table A.1 shows the complete list of 287 assembled potential determinants. We have
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17,678 country-pair-year observations for the primary analysis of each random forest. Each obser-

vation captures a particular PTA signed by a country-pair in a year.10 Of the 313 classified DESTA

provisions, a sizable portion has either no variation across agreements (either all or none of the

agreements have the provision in question) orminimal variation. In such cases, random forest out-

put is hardly interpretable as the model has too little variation to train on. Therefore, we discard

provisions present in less than 10% or more than 90% of country-pair-year observations, leaving

119 provisions for the analysis.

5 Results

5.1 Determinants of PTA Formation

Before tackling the complexity of PTA design, we apply the random forest algorithm to identify the

critical determinants of PTA formation. In this case, the algorithm’s objective is to predictwhether a

given country-pair shares a PTA in a given year. Because most potential determinants we collected

vary only slowly over time, we reduce the time dimension to five-year intervals, averaging the

value of each determinant within the interval and treating a country-pair as having a PTA in that

interval signed at any point up to the end of the interval.

Modifications to the RandomForest Algorithm—Due to its country-pair-period structure, the data used

for the formation analysis consists of 480,738 observations, making classical random forests (which

we use for finding the determinants of PTAdesign in Section 5.2 below) infeasibly computationally

costly. We introduce two simplifications to the random forest algorithm that render the problem

feasible. First, the procedure of finding the optimal splitting point at each tree node is simpli-

fied. Instead of considering all possible splitting points, only ten random splitting points for each

10 Following the literature, we treat multilateral PTAs as sets of bilateral agreements between pairs of their members.
This approach fits all PTA information into a rectangular table, facilitating empirical analysis and mapping results to
earlier studies. At the same time, essential lessons will likely be learned from treating multilateral PTAs as singular
entities, preserving the high-dimensionality of their members’ characteristics. Tackling this problem with machine
learning techniques will be a fruitful avenue for future research. As another simplification, each agreement between
a country pair is treated as an independent observation even if the pair previously had another agreement that got
superseded.
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variable are considered. Ishwaran (2015) finds that this simplification tends to attain predictive

performance that is no worse (and potentially better) than the default algorithm. Second, we sim-

plify the procedure of computing the variable importance: only a random 10% subsample of the

data is used to come up with MDA values on each iteration of Altmann et al. (2010)’s method. We

find that the results are not sensitive to the chosen subsample size. Note that the provision-level

random forests discussed in Section 5.2 are computationally simpler and do not require these two

simplifications.

Furthermore, the PTA formation exercise is extremely imbalanced: of the 480,738 country-pair-

period observations in the final data, only 16,683 have an active PTA. In such highly imbalanced

data, regular random forests focus on achieving high predictive performance for the 96.5%majority

class (country pairs without a PTA) at the expense of the 3.5% minority class (country pairs with

a PTA). To overcome this performance discrepancy, we employ a quantile classifier for random

forests, developed by O’Brien and Ishwaran (2019), which effectively boosts the predictions of

the minority class: the modified algorithmminimizes not the overall unweighted misclassification

error, but the sum of the within-class misclassification errors.

Performance—Table 1 presents the performance of the quantile classifier random forest in predict-

ing the presence of PTAs, measured with out-of-bag misclassification error. The misclassification

error is the share of observations for which the forest came up with an incorrect prediction: the

given country-pair had an agreement in a given period, but the forest predicted that it did not, or

vice versa. The error is computed out-of-bag (OOB): to come up with a prediction for each ob-

servation in the forest, only the trees that did not have this observation in their random bootstrap

training sample are used. This approach is a compromise solution between using unadjusted mis-

classification (which we avoid as it would be overly optimistic due to overfitting) or splitting the

data into training and testing samples and using the latter only for performance evaluation (which

we avoid as it would stretch our sample size too thinly). The random forest achieves a 25.5% over-

all error with a reasonable balance between the two classes: 26% of the majority class and 2% of
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the minority class are misclassified.11

Table 1: Out-of-Bag Misclassification in Imbal-
anced Formation Random Forest

OOB Misclassification
Overall 0 (Absent) 1 (Present) Share of 1s
0.255 0.264 0.021 0.035

Note. The table presents statistics on the predictive perfor-
mance of the random forest predicting PTA formation using
the quantile classifier. The misclassification error is the share
of country-pair-period observations forwhich the random for-
est incorrectly predicted the presence/absence of a PTA. It
is computed out-of-bag: for each observation, only the trees
that did not have this observation in their training sample
are used to develop a prediction. Columns “0 (Absent)” and
“1 (Present)” show misclassification only for country-pair-
period observations that had or did not have an agreement
within the period, respectively.

Significant Determinants—Table 2 lists the country-pair characteristics whose p-value variable im-

portance is below 0.01, ranked from most to least significant. These characteristics are the most

important for the random forest’s ability to predict PTA formation: we call these the significant de-

terminants of PTA formation. Several distinct groups of determinants emerge within the ranking.

The determinants within each group are highly related. Identifying important determinants even

when some form clusters of correlated variables is another advantage of the permutation impor-

tancemethodwe adopt (Altmann et al. 2010). Geographic characteristics like the distance between

the two nations, an indicator of whether they share a continent, and the exact combination of their

continents are among the variables with the highest ability to predict PTA formation.12 This esti-

11 Appendix Table A.2 shows the performance of the “regular” (i.e. not quantile classifier) random forest. It achieves
a better misclassification rate of only 3% but at the cost of significant imbalance: fully 89% of the minority class
is misclassified. The balance of performance can be summarized by the G-mean measure, which is often used as
a measure of predictive performance for imbalanced data. It is defined as the geometric mean of sensitivity and
specificity:

G-mean = √sensitivity × specificity = √(1 − OOB misclassification of 1s) × (1 − OOB misclassification of 0s)

The G-mean is 0.33 for the regular formation random forest and 0.85 for the quantile classifier (“imbalanced”) forma-
tion random forest, capturing the far better balance of performance of the latter.

12 The combination of a country pair’s continents is a categorical variable with a category for each possible pair of
continents, e.g., ”Europe, Africa”
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mate supports the findings of earlier studies that identify the importance of geographic proximity

for PTA formation (Baier and Bergstrand 2004; Bergstrand, Egger, and Larch 2016). The random

forest likewise demonstrates the importance of contagion of PTAs between trading partners: the

average and difference of the contagion index between the two nations are the second and third

most significant determinants (Baldwin 1993; Baldwin and Jaimovich 2012; Baccini and Dür 2012;

Egger and Larch 2008; Chen and Joshi 2010).

Several metrics of the domestic political situation and regime are highly predictive of PTA for-

mation. Features of the legislative and executive branches and the overall political system appear

among the most significant determinants. These findings echo the theoretical and empirical re-

sults of Mansfield and Milner (2012) showing that the domestic political regime and the number

of veto players significantly affect the propensity of a nation to enter into PTAs. Another critical

determinant identified by the random forest is whether the leaders of those countries are in their

final term, supporting the result of Baccini and Urpelainen (2014, 2015) on the tenure of the cur-

rent leader being an essential driver of whether the leader seeks PTA membership as a way to

commit to reforms. Several determinants in Table 2 speak to the average regulatory quality of the

two nations: the averages of “Voice and accountability”, “Regulatory quality”, and “Ease of doing

business” are all important for predicting PTA formation. Regulatory convergence is a significant

goal of modern PTAs (Polanco Lazo and Sauvé 2018). However, the random forest suggests that

what matters themost for PTA formation is the average level of regulatory quality in the two nations

rather than the differential in regulatory qualities. Predictably, several measures of trade volume

appear as well. The average overall volume of trade done by two nations, the volume of their bi-

lateral trade, and the share of bilateral trade in their overall trade are all highly predictive of PTA

formation. Moreover, the bilateral intra-industry trade index is significant, supporting the existing

findings that global value chains are important contributors to PTA formation, driven primarily by

multi-national corporations lobbying for increased economic integration (Baccini, Dür, and Elsig

2018; Manger 2009).

Linear Effects of Significant Determinants—In discussing the results of Table 2, we sought to connect

the significant determinants identified by the random forest to the mechanisms that the literature

has studied theoretically or using conventional econometric techniques. Note, however, that we
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Table 2: Significant Determinants of PTA Formation

Determinant P-value VIM
Population-weighted distance between most populated cities <0.01
Contagion, mean <0.01
Contagion, difference <0.01
Continent, combination <0.01
Continent, same <0.01
Price level of consumption (PPP / exchange rate), log mean <0.01
Pair’s bilateral trade in manufacturing <0.01
Human capital index (PWT), mean <0.01
Pair’s bilateral trade in agriculture <0.01
Executive branch is rural, same <0.01
Pair’s bilateral trade <0.01
Value of exports, agriculture, log mean <0.01
Legislature is bicameral, combination <0.01
Average annual hours worked by persons engaged, log mean <0.01
Pair’s trade share in their trade with everyone <0.01
Executive branch elected indirectly, combination <0.01
Voice and accountability, mean <0.01
Pair’s bilateral intra-industry trade index <0.01
Pair’s bilateral trade in agriculture, log mean <0.01
Regulatory quality, mean <0.01
Pair’s bilateral trade in manufacturing, log mean <0.01
Exeuctive branch is regionalist, same <0.01
Value of imports, manufacturing, log mean <0.01
Value of imports, agriculture, log mean <0.01
Value of imports, services, log mean <0.01
Fractionalization of legislature, mean <0.01
Political system, combination <0.01
Pair’s bilateral trade in services, log mean <0.01
Value of exports, manufacturing, log mean <0.01
Incumbent leader is serving final term, same <0.01
Capital stock, PPP, log mean <0.01
Urban population (% of total population), mean <0.01
Ease of doing business score, mean <0.01

Note. The table lists the country-pair characteristics that are significant determinants (permu-
tation importance p-value < 0.01) of PTA formation, ranked from most to least significant. All
insignificant variables are omitted.
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Table 3: Effect of Most Significant Determinants on the Likelihood of PTA Formation

PTA exists
Population-weighted distance between most populated cities −1.11***

(0.04)
Contagion, mean 3.06***

(0.20)
Contagion, difference −2.83***

(0.19)
Price level of consumption (PPP / exchange rate), log mean 0.90***

(0.03)
Pair’s bilateral trade in manufacturing −0.34***

(0.05)
Human capital index (PWT), mean 0.57***

(0.03)
Pair’s bilateral trade in agriculture −0.12***

(0.04)
Executive branch is rural, same 0.22***

(0.05)
N 48,560

Pseudo R2 0.39
Note. The table presents results of a logistic regression of the presence/absence of a PTA in
country-pair-period on themost significant determinants identified by the random forest. The
specification includes the “Continent, combination” (and thus implicitly “Continent, same”)
determinant: the coefficients of combinations are omitted for conciseness. Pseudo 𝑅2 reports
Nagelkerke 𝑅2. All coefficients are standardized. Robust standard errors are in parentheses.
* p < 0.1, ** p < 0.05, *** p < 0.01.

did not discuss the signs and magnitudes of the effects that these determinants have on the pre-

dicted likelihood of PTA formation—neither did we compare the directions of these effects to the

existing findings. The reason is that the random forest is effective at predicting and identifying

the variables that matter most for its predictive performance, but it cannot provide a single easily

interpretable coefficient to summarize the effect each variable has on the prediction. Conventional

linear regression yields such coefficients by imposing linearity on the data, which the random for-

est does not do. To aid interpretation, we conduct an auxiliary linear exercise. Table 3 presents the

results of logistic regression of PTA formation on the tenmost significant determinants, as selected

by the random forest in Table 2. The number of determinants and observations we can include in

this linear regression is necessarily limited due to missing values: the more variables are included,

the more observations are lost to missing data.

Even though the logistic regression does not allow for complex non-linearities and interactions



DETERMINANTS OF PTA DESIGN: INSIGHTS FROM MACHINE LEARNING 26

that the random forest does, it still yields some valuable insights into the role of the most critical

determinants of PTA formation. Nations farther apart are not natural trading partners and are thus

predicted to be less likely to sign an agreement, echoing the result of Baier and Bergstrand (2004).

Manufacturing and agriculture trade is negatively associated with the likelihood of PTA forma-

tion. A greater average contagion index, which captures the competitive pressures to liberalize,

is likewise positively related to this likelihood, supporting the findings of the contagion literature

(Baldwin and Jaimovich 2012). At the same time, a large differential in contagion indices between

the two nations is associated with PTA formation being less likely. One interpretation of this result

is that both nations must be facing competition in each other’s export market from countries that

have already signed a PTA. If only country 𝑖 faces pressures to defend its share in 𝑗’s market but 𝑗

does not face the same in reverse, 𝑗 may see no incentive to enter into an agreement with 𝑖. Simi-

larity in the executive branch is also associated with a greater likelihood of successfully reaching

an agreement.

Most Likely New PTAs—The formation random forest can be used not only for identifying the most

important determinants of PTA formation but also for predicting themost likely PTAs to be formed.

We use the formation random forest to predict the presence or absence of a PTA between country

pairs that do not have a recorded trade agreement in the EIA dataset in the last five-year period

in the data (2015 to 2020). Table 4 displays the ten country pairs with the highest probability of

forming a PTA, according to the random forest.

Table 4: Most Likely New PTAs

Country Pair PTA Probability
1 Dominican Republic, Panama 0.47
2 Colombia, Costa Rica 0.46
3 Bosnia & Herzegovina, Slovenia 0.45
4 Colombia, Dominican Republic 0.45
5 Norway, Russia 0.45
6 Albania, Greece 0.45
7 Ecuador, Panama 0.44
8 Australia, Germany 0.43
9 Albania, Spain 0.42
10 Austria, Bosnia & Herzegovina 0.42

Note. The table lists the ten country pairs that do not currently have a
PTA (as recorded in the EIA dataset) but are most likely to have one as
predicted by the PTA formation random forest.
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Most country pairs in this list are actually making progress toward having a PTA, supporting the

validity of the model’s predictions. Colombia and Costa Rica (second-highest probability of PTA

formation) have, in fact, already entered into a free trade agreement that went into force in 2016:

it simply has not been recorded in EIA yet. Two other entries on the list (third and tenth) involve

Bosnia and Herzegovina as well as two European Union members: Bosnia and Herzegovina ap-

plied for EU membership in 2016 and has been a candidate for accession since 2022. Similarly, the

sixth and ninth entries involve Albania and two EU members: Albania is likewise a candidate for

EU accession and is in active negotiations as of the writing of this paper. Colombia and the Do-

minican Republic are another entry on the list. Colombia has an agreement on trade cooperation

with the Caribbean Community (CAPRICOM): while the Dominican Republic is not a member of

CAPRICOM, it applied for associate membership in 2024. Ecuador and Panama also appear on

the list: they are currently negotiating a partial scope agreement, which started in 2021. Finally,

Australia and Germany appear on the list: Australia and the EU have been negotiating a free trade

agreement since 2018. Of the ten most likely country pairs to form a PTA as predicted by the ran-

dom forest, only two (Dominican Republic & Panama, Norway&Russia) are not currentlymaking

progress toward one.

5.2 Determinants of PTA Design

While random forests yield helpful insights into the determinants of PTA formation, it is evenmore

fruitful to apply them to the determinants of PTA design, which is more complex and diverse. In

this section, we present the result of provision-level random forests that seek to predict the inclu-

sion of each classified DESTA provision into PTAs—and to identify the country-pair characteristics

most essential for this prediction. We restrict these provision-level random forests to the sample of

country pairs that have formed an agreement, comparing those that included a particular provision

in their PTA to those that didn’t.

Performance—First, we evaluate the goodness of fit of the random forest constructed for each provi-

sion classified in DESTA. The “overall” column of Table 5 displays the distribution of the misclassi-

fication error across provision-level random forests. Themedian provision’s OOBmisclassification

is only 16.0%, and even the 75th percentile error is less than one quarter: random forests correctly



DETERMINANTS OF PTA DESIGN: INSIGHTS FROM MACHINE LEARNING 28

predict the presence or absence of a provision in a given agreement inmost cases. At the same time,

the overall error masks greater heterogeneity between the two classes in the data: zeroes (provi-

sion is absent from the agreement) and ones (provision is present in the agreement). The absence

of a provision (themajority class for almost all provisions) is predicted correctly in almost all cases:

the median error is just 0.6%. But the presence of a provision (the minority class for most: its me-

dian share is 21.2%) is predicted far less accurately: for the median provision, 70.2% of “ones”

are misclassified. On the one hand, these figures mean that random forests extract quite a bit of

information on the determinants of PTA design from the data, excelling at overall prediction and

correctly predicting the presence of provisions in a fair share of cases despite the strictness of the

out-of-bag measure. On the other hand, there is plenty of variation in PTA design that the random

forests cannot rationalize even when considering almost three hundred observable characteristics

of the signatories of each agreement.13

Table 5: Out-of-Bag Misclassification in Provision-Level Ran-
dom Forests

OOB Misclassification
Overall 0 (Absent) 1 (Present) Share of 1s

25th %-ile 0.120 0.000 0.390 0.148
median 0.160 0.006 0.702 0.212
75th %-ile 0.226 0.034 0.948 0.359

Note. The table presents statistics on the predictive performance of provision-
level random forests. The misclassification error is the share of country-
pair-year observations for which the random forest predicted the pres-
ence/absence of a provision incorrectly. It is computed out-of-bag: for each
observation, only the trees that did not have this observation in their train-
ing sample are used to develop a prediction. Columns “0 (Absent)” and
“1 (Present)” show misclassification only for country-pair-year observations
that had or did not have the provision in their agreement, respectively.

The quantile classifier (O’Brien and Ishwaran 2019), which we employed for the formation analy-

sis, does improve the balance of performance in the case of provision-level analysis as well, as can

be seen in Appendix Table A.3. It does so, however, at the cost of a significant drop in the overall

predictive performance and, more importantly, in the forest’s ability to discriminate between es-

13 The overall performance and distribution across classes is similar for the DTA classification of provisions, see Ap-
pendix Table A.4.
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sential determinants of PTA design (Appendix Figure A.5). Therefore, we rely on the conventional

random forests for the headline provision-level analysis below.

Performance Comparison across Models—To better contextualize the performance of the random for-

est, we compare it to two alternative models: a single classification tree and a logistic regression.

Because out-of-bag misclassification can only be defined for a random forest, we estimate all three

models on randomly selected 2
3 of the data and evaluate their performance on the remaining 1

3 .
14

All models are run for each individual DESTA provision. The single classification tree is identical

to the component trees estimated within the random forest, except that it uses the entire training

data rather than a bootstrap sub-sample. Because the logistic regression cannot deal with missing

values, it cannot be run on the same sample as the two tree-based methods, and so we estimate it

only on the predictors that have fewer than 20% missing values, leaving us with 56 predictors and

61% complete observations. To make a fair comparison between the methods, we conducted two

exercises. In the first, “Full Sample”, the tree and the forest are estimated on complete data, and the

logistic regression’s misclassification measure treats all observations that are not in its 61% sam-

ple as misclassified. In the second, “Non-NA Sub-Sample,” all three models are estimated using

56 predictors and 61% complete data: the rest is not used in calculating misclassification. Results

are presented in Table 6. For both exercises, the random forest outperforms individual trees and

logistic regression.

Table 6: Performance Comparison: Random Forest vs Alternative Models

Full Sample Non-NA Sub-Sample
Random Forest Tree Logit Random Forest Tree Logit

25th %-ile 0.123 0.212 0.432 0.055 0.107 0.079
median 0.164 0.277 0.456 0.079 0.145 0.114
75th %-ile 0.227 0.376 0.477 0.115 0.211 0.157

Note. The table presents statistics on the predictive performance of provision-level random
forests, individual trees, and logistic regressions. All are estimated on random 2/3 of the data
and evaluated on the remaining 1/3. “Full Sample” counts observations that the logistic regres-
sion cannot make a prediction for (because of missing values) as misclassified. “Non-NA Sub-
Sample” estimates all models only on 56 predictors and observations with no missing values.

14 For this reason, the random forests’ performance metrics in this exercise do not exactly match the metrics of our
benchmark forests in Table 5.
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Important Determinants of Overall Design—Several country-pair characteristics stand out as essential

determinants of overall PTA design. Figure 3 displays the ten factors that are significant determi-

nants of the largest share of provisions as classified in DESTA.15 Random forests estimated using

the quantile classifier or using the DTA classification of provisions display a similar ranking of

determinants: see Appendix Figures A.5 and A.7 respectively. We call a variable a significant de-

terminant of a provision if its permutation importance p-value is below 1%. The variable encoding

the combination of the trading partners’ continents is the most universally important determinant

of PTA provisions, significantly predictive of the inclusion of over 90% of provisions classified in

DESTA: its top rank is consistent across alternative specifications (Appendix Figures A.5 and A.7).

A measure of the distance between the two trading partners is also among the top determinants

for the two alternative specifications. Geographic factors have been shown to be important for PTA

formation in prior literature (Baier and Bergstrand 2004; Bergstrand, Egger, and Larch 2016) and

confirmed by random forests in Section 5.1 are essential for predicting the content of said PTAs

as well. The interpretation of these findings, however, is different. Not only do neighbors appear

more prone to signing agreements (which is captured by the literature’s results on PTA formation),

but even conditional on agreeing to sign one, neighbors may face different needs when liberalizing

their trade compared to two geographically remote trading partners.

Interdependence of provisions across agreements has some of the most universal predictive

power. The presence of a provision in the two trading partners’ existing agreements with third

nations (captured by the template index) matters for whether the two partners choose to include

this provision in an agreement of their own, as does the difference in the partners’ exposure to

the provision. The contrast in the competitive pressures the two partners face for each other’s

market from third countries (captured by the difference in the contagion index) is also crucial for

predicting whether the provision makes it into their PTA. This result extends the findings of an

extensive literature and our results in Section 5.1 on the importance of interdependence for PTA

formation (Baldwin 1993; Baldwin and Jaimovich 2012; Baccini and Dür 2012; Egger and Larch

2008; Chen and Joshi 2010), showing that it is highly relevant for understanding differences in

15 Appendix Figure A.6 plots the distribution of potential determinants over the share of provisions each is a significant
determinant of.
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Figure 3: Top Ten Determinants of Provisions
Note. The figure displays the country-pair characteristics ranked by the share of provisions each is a
significant determinant of. Only the top ten determinants are displayed. For a given variable, “% of
provisions”measures the share of provisions for which the p-value of its variable importancemeasure
is below 1%.

PTA design as well. The average consumption price level in the two countries is another crucial

determinant. It speaks to the real exchange rate of the two nations: not between each other, which

would be captured by the difference in price levels (which is not significantly influential), but their

average real exchange rate with the rest of the world. It extends prior findings that real exchange

rate movements (or fear thereof) may limit nations’ desire to commit to integration (Fernández-

Arias, Panizza, and Stein 2004). The human capital index (as constructed by Penn World Tables)

is also highly relevant. The importance of the development level for PTA design is not surprising:

what is interesting is that random forests found this development metric the most informative. At

the same time, random forests do not find the difference in development levels (by anymetric) to be

particularly relevant for PTA design, in contrast to the existing literature finding it to be essential

for PTA formation (Manger 2009; Büthe and Milner 2008; Baccini and Urpelainen 2014).

While average relative Foreign Direct Investment (FDI) inflows do not make the top 10 us-

ing the DESTA classification, they are an important determinant of over half of DTA provisions

(Appendix Figure A.7). Their significance is particularly stark as FDI flows were not an essential

determinant of PTA formation in Section 5.1. This result supports the literature’s focus on multi-

national corporations as one of the primary drivers of the increasing depth of recent agreements,
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shifting their focus from simple trade liberalization through tariff reduction to FDI liberalization

through regulation harmonization (Manger 2009; Baccini, Dür, and Elsig 2018; Gamso and Grosse

2021; Kim et al. 2019). Another highly predictive determinant relates to the average quality of gov-

ernance of the two nations, as captured by theWorld Governance Indicators’ “Regulatory quality”

metric. Predictably, the regulatory apparatus of the trading partners matters for their ability and

will to impose international regulation on each other (Polanco Lazo and Sauvé 2018). This obser-

vation extends the findings of Gamso and Grosse (2021) and Lechner (2016) on the importance

of domestic regulation for PTA provisions sought in negotiations. At the same time, internal po-

litical factors—like political competitiveness, leaning of the current government, or the tenure of

the current leader—have been previously shown to be essential for PTA formation (Mansfield and

Milner 2012; Baccini and Urpelainen 2014) and confirmed by random forests in Section 5.1, but the

random forests do not find them to be particularly informative for PTA design.

Another way to compare country characteristics in their ability to predict the content of PTAs is

to estimate the random forest with different subsets of the list of potential determinants and com-

pare the attained predictive performance. Table 7 presents the results of this exercise, comparing

the out-of-bag misclassification for the median provision across several alternative variable sets.

Estimating a random forest while excluding the top ten determinants listed in Figure 3 raises the

misclassification rate from 16% (first column) to 19% (second column): the top determinants are

important but not the only potent predictors of differences in PTA design. Next, we split all po-

tential determinants into six topic areas: economy, geography, history & culture, interdependence,

politics, and trade. Estimating a set of random forests using only the potential determinants from

one area at a time, we find that interdependence (contagion and template indices) and geography

produce the highest predictive performance. These two areas outperformed the benchmark set

of random forests that included all variables. Politics is the next most predictive area. Trade and

economic variables are further down the ranking. History & culture offer the least explanatory

power of all topic areas. This ranking broadly mirrors the insights from the permutation variable

importance measure summarized in Figure 3.

Important Determinants of Provisions by Policy Area—PTA provisions cover many trade issues. What

is essential for one area may be irrelevant for another. DESTA groups provisions by policy area
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Table 7: Performance Comparison: Alternative Sets of Potential Determinants

All Excluding
Top 10 Economy Geography History,

Culture Interdependence Politics Trade

0.160 0.186 0.191 0.148 0.210 0.137 0.179 0.187
Note. The table presents the OOB misclassification for the median provision across several alternative variable
sets. “All” is identical to the benchmark specification in Table 5. “Excluding Top 10” omits the ten most important
determinants displayed in Figure 3. The remaining sets split all variables into six topics and include only predictors
related to one topic at a time.

they fit in. We repeat the exercise of identifying the most important determinants within these

areas. Table 8 lists up to three most important determinants for each provision area, discarding

determinants that appear in the overall ranking in Figure 3. Thus, we obtain a list of uniquely

important determinants by policy area that are highly predictive for understanding PTA design

within this area but few others.

Table 8: Uniquely Important Determinants of Each Provision Area

Determinant Share of provisions
Capital Movement And Exchange Rates

Cost of business start-up procedures (% of GNI per capita), mean 4/6
Government effectiveness, mean 4/6
Human capital index (WDI), mean 4/6

Competition
Foreign direct investment, net inflows (% of GDP), mean 4/5
Human capital index (WDI), mean 4/5
Voice and accountability, mean 4/5

Dispute Settlement
Value of imports, agriculture, log mean 13/16
Urban population (% of total population), mean 12/16
Real consumption, PPP, log mean 12/16

Intellectual Property Rights
Contagion, mean 4/5
Population-weighted distance between most populated cities 4/5
Inflation, consumer prices (annual %), mean 3/5

Investments
Frontier technology readiness index, mean 11/12
Contagion, mean 10/12
Population-weighted distance between most populated cities 10/12

Public Procurement
Ease of doing business score, mean 2/2
Rule of law, mean 2/2



DETERMINANTS OF PTA DESIGN: INSIGHTS FROM MACHINE LEARNING 34

Voice and accountability, mean 2/2
Regulatory Co-Operation And Transparency

Business extent of disclosure index, mean 2/2
CPIA structural policies cluster average, difference 2/2
Control of corruption, mean 2/2

Services
Human capital index (WDI), mean 14/15
Statistical performance indicators, mean 14/15
Value of imports, services, log mean 11/15

Technical Barriers To Trade
Voice and accountability, mean 4/5
Population-weighted distance between most populated cities 4/5
Value of imports, manufacturing, log diff. 4/5

Temporary Entry Of Business Persons
Business extent of disclosure index, mean 5/5
Control of corruption, mean 5/5
Energy imports, net (% of energy use), mean 5/5

Trade Defense Instruments
Pair’s bilateral trade in manufacturing, log mean 8/8
Value of imports, services, log mean 7/8
Real GDP, PPP, log mean 7/8

Note. The table presents determinants ranked by the number of provisions each is significant for, by provision area.
The top 10 determinants by the overall number of provisions they are important for are excluded, leaving vari-
ables that are uniquely important for each area. Provision areas are presented as categorized in DESTA, dropping
areas with one or no provisions in our sample. For a given variable, “Share of provisions” counts the provisions
in each area for which the p-value of its variable importance measure is below 1%. Within each area, variables are
ranked by this share and only the top 3 are displayed, or fewer if the area lacks unique significant determinants.

Measures of domestic administrative quality are evenmore relevant for some areas. Severalmetrics

from the World Governance Indicators (“Government effectiveness”, “Voice and Accountability”,

etc.), the Database of Political Institutions (“Checks and balances”) or the World Bank’s Doing

Business survey (“Ease of doing business”, “Cost of business start-up procedures”, “Business ex-

tent of disclosure index”) emerge as some of the top predictors of provisions on capital movement,

competition, public procurement, regulatory co-operation and transparency, technical barriers to trade, and

temporary entry of business persons. Additional measures of trade matter for some areas: services

trade is a strong predictor of provisions in the “services” and “trade defense instruments” areas,

while agricultural trade is important for the “dispute settlement” area. Provisions in the “invest-

ments” area are predicted by the frontier technology readiness of both partners.
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5.3 Important Determinants of Provisions That Are Most Impactful for Trade

The exercises above consider all provisions classified in DESTA (conditional on each provision

having sufficient variation). Not all provisions matter equally for trade outcomes, and those that

do may be of particular interest to researchers and policymakers. Breinlich et al. (2021) use a

version of the lasso regularized regression to identify a list of DTA provisions with the largest

effects on trade outcomes. In this section, we explore the important determinants of the provisions

they identified. We use the seven provisions the plug-in PPML-lasso regression produces as in

Table 5 of Breinlich et al. (2021).16 Table 9 lists the seventeen country-pair characteristics that

are important determinants of the inclusion of all seven provisions that are impactful for trade

outcomes. Overall, factors important for overall PTAdesign (Section 5.2)—measures of geographic

proximity, regulatory quality, and contagion—emerge as leading determinants of including trade-

relevant provisions. Average energy use, energy imports, and natural resource rents are also highly

relevant for these selected provisions, analogously to the services and competition policy areas.

To help interpret how the identified significant determinants of all trade-relevant provisions

affect their inclusion, we conduct an auxiliary linear regression exercise akin to that done in Sec-

tion 5.1 for the question of PTA formation. Column “Count” of Table 9 presents a Poisson regres-

sion of the number of trade-relevant provisions included in a PTA on their essential determinants

identified by Random Forests. For a more fine-grained look, we apply a hurdle model that tends to

fit count data better by splitting the problem into two: first, it uses a logistic regression to predict

whether the count is above zero or not; second, it uses a Poisson regression to predict the value of

the count provided it is non-zero (Lambert 1992; Mullahy 1986; Feng 2021). In our application, the

first stage, in column “Any” of Table 9, captures the determinants of whether any trade-relevant

provisions were included. The second stage, in column “Count (≥ 1)”, captures the determinants

of how many trade-relevant provisions were included in PTAs that have at least some.

16 The method they use identifies eight provisions, but two are perfectly collinear, and thus we drop one. Furthermore,
while lasso identifies these seven provisions as sufficient to explain the trade effects of PTAs, post-lasso estimation
shows that only three have a significantly non-zero effect on trade. Finally, they also developed the iceberg lasso
method. It identifies a greater number of impactful provisions, but these are highly collinear with the eight identified
by the plug-in PPML-Lasso.
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The exercise yields fewer interpretable insights than its analog in Section 5.1. “Regulatory quality”

is negatively associated with the propensity of two nations to have any trade-relevant provisions

in their agreement but positively associated with the number of these provisions. Greater distance

reduces the expected number of trade-relevant provisions as long as there are some. Most puz-

zlingly, the estimated effects of the aggregates of the contagion index have unexpected signs for

the “any” specification. Greater contagion pressures shared by both nations (captured by “Con-

tagion, mean”) appear to harm a PTA’s chances of having any trade-relevant provisions, and the

differential in contagion pressures between the two nations (captured by “Contagion, difference”)

appears to boost them. Both are counter to theoretical mechanisms developed in the literature

on contagion cited above and our results on PTA formation in Section 5.1. These puzzling results

underscore that random forests can pick up complex non-linear and interacting relationships be-

tween potential determinants and PTA design differences that are not easily summarized with a

linear approximation. Furthermore, the random forests could use all of the available data thanks

to the on-the-fly-imputation method, while the logistic regression loses most observations due to

the disparate sets of missing values in the seventeen selected variables.

6 Conclusion

Modern preferential trade agreements are increasingly complex and diverse. Existing research has

studied many factors that determine PTA formation and design. At the same time, those studies

consider only a limited number of determinants at once and reduce PTA design to the presence

of a specific provision or a single index of PTA depth. Machine learning techniques provide one

avenue to overcome these limitations and compare many potential determinants of PTA design

while preserving the high dimensionality of design differences. We apply random forests to select

the country-pair characteristics with the highest predictive power, including various provisions

in PTAs, thus identifying the critical determinants of PTA design. Several categories of determi-

nants emerge as essential for most provisions. These determinants are the interdependence of PTA

features across trading partners, measures of geographic proximity, regulatory quality, and FDI

flows. These findings point to several of the mechanisms of PTA formation or design that the lit-

erature has studied (Baldwin and Jaimovich 2012; Gamso and Grosse 2021; Mansfield and Milner
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Table 9: Effects of Most Important Determinants on the Presence and Number of PTA Provisions
Most Impactful for Trade

Hurdle Model
Count Any Count (≥ 1)

Arable land (% of land area), mean 0.01 0.53 0.00
(0.01) (0.32) (0.00)

Average annual hours worked by persons engaged, log mean 0.01 0.18 0.01*
(0.01) (0.71) (0.01)

Contagion, difference −0.01 26.86** 0.00
(0.01) (10.89) (0.00)

Contagion, mean 0.01* −38.79** 0.00
(0.00) (15.89) (0.00)

Energy imports, net (% of energy use), mean 0.13** −0.76 0.00
(0.05) (0.57) (0.03)

Energy use (kg of oil equivalent per capita), log diff. −0.03** −0.23 −0.02***
(0.01) (0.45) (0.01)

Energy use (kg of oil equivalent per capita), log mean 0.00 0.58 0.02
(0.03) (0.69) (0.02)

Human capital index (PWT), mean 0.05* −1.16 −0.01
(0.03) (1.04) (0.01)

Political stability and absence of violence/terrorism, mean 0.04** −1.76*** 0.00
(0.01) (0.63) (0.01)

Population-weighted distance between most populated cities 0.07 0.50 −0.01
(0.06) (0.92) (0.03)

Regulatory quality, difference 0.00 −0.43 0.00
(0.01) (0.36) (0.01)

Regulatory quality, mean −0.02 2.30** 0.04**
(0.03) (1.05) (0.02)

Template, mean 0.00 2.49*** 0.00
(0.01) (0.94) (0.01)

Total natural resources rents (% of GDP), difference −0.37*** 2.73*** −0.06
(0.07) (0.98) (0.06)

Total natural resources rents (% of GDP), mean 0.41*** −3.38** 0.06
(0.10) (1.61) (0.08)

Voice and accountability, mean 0.08 −2.43** −0.02
(0.05) (0.99) (0.03)

N 1,161 1,161 1,056
Pseudo R2 0.93 0.71 0.97

Note. The table presents results of regressions of the number and presence ofmost impactful provisions identi-
fied by Breinlich et al. (2021) on the most important determinants identified in this section. Column “Count”:
Poisson regression on the number of selected provisions in a PTA. Column “Any”: logistic regression on
whether any selected provisions are present in a PTA. Column “Count (≥ 1)”: Poisson regression on the count
of selected provisions, conditional on it being non-zero. All three regressions include the “Continent, combi-
nation” determinant: coefficients of its combinations are omitted for conciseness. Pseudo 𝑅2 reports Nagelk-
erke 𝑅2. All columns report standardized coefficients, making magnitudes comparable within columns (but
not across since different models are used). Robust standard errors are in parentheses. * p < 0.1, ** p < 0.05,
*** p < 0.01.
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2012). At the same time, many other determinants linked to previously studied mechanisms are

not identified by random forests to be particularly informative of PTA design differences, partic-

ularly those related to internal political situation and economic differences across partners (e.g.

Baccini and Urpelainen 2014; Bergstrand, Egger, and Larch 2016). This difference suggests that

such factors could be relevant for PTA formation but less critical for the contents that negotiators

settle on.

There are several directions for future research that can build on our methodology and find-

ings. The first direction is studying the determinants of PTA formation and design while retaining

the high dimensionality of PTA membership, which could yield important insights into multilat-

eral agreements. Our approach represented multilateral PTAs as sets of bilateral agreements to

facilitate empirical analysis with random forests at the cost of ignoring multilateral considerations

like the size and composition of a PTA’s membership. One alternative approach is to conduct OLS

or RF analysis at the multilateral agreement level, using various moments of each characteristic

across members as predictors. Another is to use machine learning algorithms that support vari-

able unordered feature sets (reflecting variable PTA membership sizes), like CDANs (Gardner,

Elhami, and Selmic 2019). The second research direction should investigate how commitments

within PTAs surpass those established by the WTO. This is particularly pertinent in light of recent

developments and initiatives within the WTO, such as the ongoing negotiations on the Joint State-

ment Initiative on Electronic Commerce (ongoing), the operational Multi-Party Interim Appeal

Arbitration Arrangement (2020), the concluded negotiations of the Services Domestic Regulation

initiative (2021), and the Investment Facilitation for Development initiative (2023). Understand-

ing these dynamics will offer insightful perspectives on the evolving landscape of international

trade agreements. Lastly, the third direction for future research is to delve deeper into the individ-

ual mechanisms identified by random forests as important for PTA formation and design. Random

forests excel at picking up all kinds of non-linearities and interactions between variables in the data

but do so at the cost of the interpretability of individual mechanisms. Although they highlight the

country-pair characteristics that are most relevant to PTA design, they leave it for conventional

econometric methods to tease out how or why each characteristic is related to PTA design. Thus,

our results motivate further research focusing on individual mechanisms that relate to essential
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determinants suggested by the random forests.
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Appendix Figures and Tables

Figure A.1: Number of Country Pairs with an Active Agreement
Note. The figure displays the percentage share of all country pairs that weremembers of the same PTA
(as classified in EIA) in a given year.
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Figure A.2: Number of PTAs Signed per Year (Data: DTA)
Note. The figure is the analog of Figure 1b, using PTAs as classified in DTA rather than DESTA. The
figure displays the number of new PTAs signed per year.
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Figure A.3: Average Number of Provisions in a PTA over Time (Data: DTA)
Note. The figure is the analog of Figure 1c, using PTAs and provisions as classified in DTA rather than
DESTA. The figure displays the average number of provisions in newly signed PTAs by year.
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Figure A.4: Variance of Provisions Included in PTAs over Time (Data: DTA)
Note. The figure is the analog of Figure 1d, using PTAs and provisions as classified in DTA rather than
DESTA. Variance is measured as the trace of the covariance matrix of vectors indicating the inclusion
of provisions in each PTA,which is equivalent to the sumof variances of the binary provision inclusion
variable across provisions.
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Figure A.5: Top Determinants of Provisions, Imbalanced Random Forests
Note. The figure displays the country-pair characteristics ranked by the share of provisions each is a
significant determinant of, using the imbalanced classifier random forests. For a given variable, “% of
provisions”measures the share of provisions for which the p-value of its variable importancemeasure
is below 1%.
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Figure A.6: Distribution of Determinants
Note. The figure displays the distribution of country-pair characteristics over the share of provisions
each is a significant determinant of, using the DESTA classification. For a given variable, “% of pro-
visions” measures the share of provisions for which the p-value of its variable importance measure is
below 1%. The top ten determinants in Figure 3 are highlighted.
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Figure A.7: Top Ten Determinants of Provisions, DTA
Note. The figure displays the country-pair characteristics ranked by the share of provisions each is
a significant determinant of, using the DTA classification. For a given variable, “% of provisions”
measures the share of provisions for which the p-value of its variable importance measure is below
1%.



DETERMINANTS OF PTA DESIGN: INSIGHTS FROM MACHINE LEARNING 54

Table A.1: List of Potential Determinants Used in Random Forests, Grouped by Data Source

Variable Aggregators
CEPII BACI + UN Comtrade

Pair’s bilateral intra-industry trade index
Pair’s bilateral trade
Pair’s bilateral trade in agriculture
Pair’s bilateral trade in manufacturing
Pair’s bilateral trade in services
Share of bilateral trade in agriculture
Share of bilateral trade in manufacturing
Share of bilateral trade in services
Share of trade in agriculture mean, difference
Share of trade in manufacturing mean, difference
Share of trade in services mean, difference
Total trade log mean, log diff.
Value of exports, agriculture log mean, log diff.
Value of exports, manufacturing log mean, log diff.
Value of imports, agriculture log mean, log diff.
Value of imports, manufacturing log mean, log diff.
Value of imports, services log mean, log diff.

CEPII Geodist
Continent same, combination
Landlocked same, combination

CEPII Gravity
EU member same
GATT member same
WTO member same
Historical origin of the legal system same
Pair ever in a colonial dependency relationship
Pair ever in a colonial sibling relationship
Pair is contiguous
Pair shares common language spoken by 9%+ of population
Pair shares common legal system origins
Pair shares common official/primary language
Pair’s trade share imbalance
Pair’s trade share in their trade with everyone
Population-weighted distance between most populated cities
Religious proximity index
Trade imbalance, relative

CEPII Language
Pair’s linguistic proximity (LP1)
Pair’s linguistic proximity (LP2)

Composite
Contagion mean, difference
Template mean, difference
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Database of Political Institutions
Checks and balances index mean, difference
Executive branch elected indirectly same, combination
Executive branch is nationalist same, combination
Executive branch is religious same, combination
Executive branch is rural same, combination
Exeuctive branch is regionalist same, combination
Fractionalization of legislature mean, difference
Fractionalization of opposition mean, difference
Fractionalization of the executive mean, difference
Ideological position of the executive branch same, combination
Incumbent leader is serving final term same, combination
Incumbent leader still in office same, combination
Largest party in the executive is right-leaning same, combination
Lax checks and balances index mean, difference
Legislature has multiple parties same, combination
Legislature is bicameral same, combination
Military has a role in government same, combination
Number of years the incumbent leader’s been in office mean, difference
Political system same, combination

IMF CDIS
FDI imbalance mean, difference
FDI inflow log mean, log diff.
FDI outflow log mean, log diff.
Pair’s FDI share imbalance
Pair’s FDI share in their FDI with everyone
Pair’s relative FDI imbalance
Total FDI log mean, log diff.

Penn World Table
TFP level, PPP log mean, log diff.
Average annual hours worked by persons engaged log mean, log diff.
Capital services levels, PPP log mean, log diff.
Capital stock depreciation rate mean, difference
Capital stock, PPP log mean, log diff.
Government consumption share in GDP, PPP mean, difference
Gross capital formation share in GDP, PPP mean, difference
Household consumption share in GDP, PPP mean, difference
Human capital index (PWT) mean, difference
Number of persons engaged log mean, log diff.
Population log mean, log diff.
Price level of consumption (PPP / exchange rate) log mean, log diff.
Real GDP, PPP log mean, log diff.
Real consumption, PPP log mean, log diff.
Real domestic absorption, PPP log mean, log diff.
Real internal rate of return mean, difference
Share of labor compensation in GDP mean, difference

UNCTAD
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Container port throughput log mean, log diff.
Frontier technology readiness index mean, difference
Pair’s liner connectivity index

WITS
Avg weighted tariff pair levies on each other
Difference in weighted tariff pair levies on each other

World Development Indicators
CPIA building human resources rating mean, difference
CPIA business regulatory environment rating mean, difference
CPIA debt policy rating mean, difference
CPIA economic management cluster average mean, difference
CPIA efficiency of revenue mobilization rating mean, difference
CPIA equity of public resource use rating mean, difference
CPIA financial sector rating mean, difference
CPIA fiscal policy rating mean, difference
CPIA gender equality rating mean, difference
CPIA macroeconomic management rating mean, difference
CPIA policies for social inclusion/equity cluster average mean, difference
CPIA policy and institutions for environmental sustainability mean, difference
CPIA property rights and rule-based governance rating mean, difference
CPIA public sector management and institutions cluster average mean, difference
CPIA quality of budgetary and financial management rating mean, difference
CPIA quality of public administration rating mean, difference
CPIA social protection rating mean, difference
CPIA structural policies cluster average mean, difference
CPIA trade rating mean, difference
CPIA transparency, accountability, and corruption in the public sector rating mean, difference
Agricultural land (% of land area) mean, difference
Arable land (% of land area) mean, difference
Average time to clear exports through customs mean, difference
Bribery incidence mean, difference
Business extent of disclosure index mean, difference
Central government debt, total (% of GDP) mean, difference
Cost of business start-up procedures (% of GNI per capita) mean, difference
Current account balance (% of GDP) mean, difference
Depth of credit information index mean, difference
Ease of doing business score mean, difference
Educational attainment: % of population 25+ completed upper secondary mean, difference
Educational attainment: % of population 25+ with Bachelor’s mean, difference
Energy imports, net (% of energy use) mean, difference
Energy use (kg of oil equivalent per capita) log mean, log diff.
Firms formally registered when operations started (% of firms) mean, difference
Firms that spend on R&D (% of firms) mean, difference
Firms using banks to finance working capital (% of firms) mean, difference
Foreign direct investment, net inflows (% of GDP) mean, difference
High-technology exports (% of manufactured exports) mean, difference
Human capital index (WDI) mean, difference
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Industrial design applications, resident, by count log mean, log diff.
Inflation, consumer prices (annual %) mean, difference
International migrant stock (% of population) mean, difference
Labor force log mean, log diff.
Labor force participation rate mean, difference
Land area log mean, log diff.
Market capitalization of listed domestic companies (% of GDP) mean, difference
Net lending/borrowing (% of GDP) mean, difference
Net migration mean, difference
Patent applications, residents log mean, log diff.
Personal remittances, received (% of GDP) mean, difference
Research and development expenditure (% of GDP) mean, difference
Rural land area log mean, log diff.
Statistical capacity score mean, difference
Statistical performance indicators mean, difference
Stocks traded, total value (% of GDP) mean, difference
Strength of legal rights index mean, difference
Total greenhouse gas emissions (kt of CO2 equivalent) log mean, log diff.
Total natural resources rents (% of GDP) mean, difference
Trademark applications, resident, by count log mean, log diff.
Unemployment, total (% of total labor force) mean, difference
Urbal land area log mean, log diff.
Urban population (% of total population) mean, difference

World Governance Indicators
Control of corruption mean, difference
Government effectiveness mean, difference
Political stability and absence of violence/terrorism mean, difference
Regulatory quality mean, difference
Rule of law mean, difference
Voice and accountability mean, difference

Note. Variables are grouped by the source the measure was taken from or whose data it’s constructed from. The “aggrega-
tors” column lists ways in which country-year variables were aggregated between the two countries to form country-pair-year
variables. Options are: mean (in levels or in logs) and difference (level or log) for numeric variables, same (a binary indica-
tor for whether the two countries’ values match) and combination (a category for each possible combination of values) for
categorical variables. Bilateral variables measured at the country-pair-level originally do not require such aggregation, and so
“aggregators” blank for them.
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Table A.2: Out-of-Bag Misclassification in Regular
Formation Random Forest

OOB Misclassification
Overall 0 (Absent) 1 (Present) Share of 1s
0.031 0.000 0.892 0.035

Note. The table presents statistics on the predictive perfor-
mance of the random forest predicting PTA formation. The
misclassification error is the share of country-pair-period ob-
servations for which the random forest predicted the pres-
ence/absence of a PTA incorrectly. It is computed out-of-bag:
for each observation, only the trees that did not have this ob-
servation in their training sample are used to develop a predic-
tion. Columns “0 (Absent)” and “1 (Present)” show misclas-
sification only for country-pair-period observations that had
or did not have an agreement within the period, respectively.
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Table A.3: Out-of-Bag Misclassification in Provision-Level Im-
balanced Random Forests

OOB Misclassification
Overall 0 (Absent) 1 (Present) Share of 1s

25th %-ile 0.197 0.212 0.055 0.161
median 0.252 0.282 0.115 0.229
75th %-ile 0.311 0.342 0.178 0.402

Note. The table presents statistics on the predictive performance of provision-
level random forests using the quantile classifier. The misclassification error
is the share of country-pair-year observations for which the random forest
predicted the presence/absence of a provision incorrectly. It is computed out-
of-bag: for each observation, only the trees that did not have this observation
in their training sample are used to develop a prediction. Columns “0 (Ab-
sent)” and “1 (Present)” show misclassification only for country-pair-year
observations that had or did not have the provision in their agreement, re-
spectively.



DETERMINANTS OF PTA DESIGN: INSIGHTS FROM MACHINE LEARNING 60

TableA.4: Out-of-BagMisclassification in Provision-Level Ran-
dom Forests, DTA

OOB Misclassification
Overall 0 (Absent) 1 (Present) Share of 1s

25th %-ile 0.107 0.000 0.267 0.152
median 0.143 0.001 0.705 0.212
75th %-ile 0.190 0.038 0.906 0.379

Note. The table presents statistics on the predictive performance of provision-
level random forests using DTA classification. The misclassification error is
the share of country-pair-year observations for which the random forest pre-
dicted the presence/absence of a provision incorrectly. It is computed out-of-
bag: for each observation, only the trees that did not have this observation in
their training sample are used to develop a prediction. Columns “0 (Absent)”
and “1 (Present)” show misclassification only for country-pair-year observa-
tions that had or did not have the provision in their agreement, respectively.


